HIGHER SECONDARY EXAMINATION

TIME: $2\frac{1}{2}$ Hours **II YEAR SECOND TERM 2015**

Cool-off time: 15 minutes

PART III

MATHEMATICS (SCIENCE)

Maximum: 80 (Scores)

GENERAL INSTRUCTIONS TO CANDIDATES:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hours.
- You are not allowed to write your answers or to discuss anything with others during the 'Cool-off
- Use 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.
- 1. The total profit y (in rupees) of a drug company from the manufacture and sale of x bottles of drug is given by

 $y = \frac{-x^2}{300} + 2x - 50.$

- i) How many bottles of drug must the company sell to obtain the maximum profit? (4)
- ii) What is the maximum profit?

OR

- The length of three sides of a trapezium other than base are equal to 10cm, then find the area of the trapezium when it is maximum.
- 2. i) Prove that the function given by $f(x) = x^3 3x^2 + 3x 100$ is increasing in R. (3)
 - ii) Find differential to approximate $(26)^{\frac{3}{3}}$. (4)

- i) Find the intervals in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing. (4)
- ii) Find approximate value of f(2.01), where $f(x) = 4x^2 + 5x + 2$. (3)
- 3. Evaluate:

$$i) \qquad \int \frac{dx}{\left(e^x + e^{-x}\right)^2} \tag{3}$$

(P.T.O)

(2)

(6)

ii)
$$\int \frac{x-1}{(x-2)(x-3)} dx$$
iii)
$$\int x^2 e^x dx$$
(3)
iv)
$$\int \frac{(1+\log x)^2}{x} dx$$
(3)

4. Evaluate:

$$i) \qquad \int \frac{1}{e^x - 1} dx \tag{3}$$

ii)
$$\int_{0}^{\frac{\pi}{2}} \sin^2 x \, dx. \tag{2}$$

iii)
$$\int \frac{dx}{\sqrt{9-25x^2}}$$
 (3)

iv)
$$\int \frac{dx}{x^4 - 1}$$
 (4)

- 5. i) The value of $\int e^x [f(x) + f'(x)] dx = \dots$ (2)
 - ii) Using the above result, find $\int \frac{x}{(1+x)^2} e^x dx$ (3)
- 6. i) Prove that the points whose position vectors are given by $2\vec{i} \vec{j} + \vec{k}$, $\vec{i} 3\vec{j} 5\vec{k}$ and $3\vec{i} 4\vec{j} 4\vec{k}$ form a right-angled triangle. (3)
 - ii) Find the value of λ such that the vectors $\vec{a} = 2\vec{i} + \lambda \vec{j} + \vec{k}$ and $\vec{b} = \vec{i} 2\vec{j} + 3\vec{k}$ are perpendicular. (2)
- 7. (a) If $\vec{a} = 3\hat{i} \hat{j} 5\hat{k}$ $\vec{b} = \hat{i} 5\hat{j} + 3\hat{k}$, show that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular. (3)
 - (b) Given the position vector of three points $\vec{A} = (\hat{i} \hat{j} + 2\hat{k})$; $\vec{B} = (4\hat{i} + 5\hat{j} + 8\hat{k})$, $\vec{C} = (3\hat{i} + 3\hat{j} + 6\hat{k})$
 - (i) Find \overrightarrow{AB} and \overrightarrow{AC}
 - (ii) Prove that A,B,C are collinear points. (2)
- 8. i) Find the equation of the plane passing through the intersection of the two planes

$$\vec{r} \cdot (i+j+k) = 6$$
 and $\vec{r} \cdot (2i+3j+4k) = -5$ and through the point (1,1,1). (3)

- ii) Find the distance from point (2, 1, -3) to the plane 2x-3y+6z=2
- 9. i) Reduce the equation of a plane 3x-2y+4z=5 into intercept form. And obtain its intercepts. (3)
 - i) Find the angle between the line $\vec{r} = 2i + 3j + 4k + \lambda(\vec{i} + 3\vec{j} + 4\vec{k})$ and the plane $\vec{r} \cdot (4i + j 3k) = 1$ (3)
- 10. Evaluate $\int_{0}^{1} e^{x} dx$ as the limit of a sum. (4)
- 11. i) Find the angle between the planes 2x y + z = 6 and x + y + 2z = 7 (3)
 - ii) Let the two skew lines are $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$.
 - a) Find the dr's of the above lines (2)
 - b) Using Cartesian formula, find the shortest distance between the lines. (4)
