Second year Higher Secondary Examination

TIME: $2\frac{1}{2}$ Hours **II YEAR**

FIRST TERM 2015 Cool-off time: 15 minutes

PART III

MATHEMATICS (SCIENCE)

Maximum: 80 (Scores)

GENERAL INSTRUCTIONS TO CANDIDATES:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time of $2\frac{1}{2}$ hours.
- You are not allowed to write your answers nor to discuss anything with others during the 'Cool-
- Use 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.
- 1. (a) Let $f: A \rightarrow B$ be a function, then f^{-1} exists if
 - (i) f is one-one.
- (ii) f is onto. (iii) f one-one but not onto.
- (iv) f is one-one and onto.

(1)

(3)

- (b) Find gof and fog, if $f(x) = 8x^3$ and $g(x) = x^{\frac{1}{3}}$
- Consider a binary operation $^{\land}$ on the set $\{1, 2, 3, 4, 5\}$ defined by $a ^{\land} b = \min(a, b)$. Write the

operation table of the operation ^. (3)

Show that the signum function $f: R \to R$ is given by $f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \text{ is neither one-one} \\ -1, & \text{if } x > 0 \end{cases}$ (b)

nor onto. (3)

Consider $f: R \to R$ given by $f: R - \left\{-\frac{4}{3}\right\} \to R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. (c) The inverse of f(4)

3.	If $X = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ then X^n for $n \in N$ is equal to	
	(a) $2^{n-1}X$ (b) n^2X (c) nX (d) $2^{n+1}X$ (e) 2^nX	(1)
4.	(a) If $A = \begin{bmatrix} 3 & 2 \\ 5 & 1 \end{bmatrix}$, prove that $A^2 - 4A - 71 = 0$.	(3)
5.	(b) Let $A = \begin{bmatrix} 2 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$. Express A as the sum of a symmetric and a skew symmetric matrix. (a) Using the properties of determinants, prove that $\begin{vmatrix} a-b-c & 2a & 2a \end{vmatrix}$	(3)
	$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}$	(4)
	OR	
	Evaluate the value of the determinant: $\begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \end{vmatrix}$	(4)
	(b) If $A = \begin{bmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & -1 & -2 \end{bmatrix}$ what is the value of $ 3A $?	(3)
	(c) Find the equation of the line joining the points $(1,2)$ and $(-3,-2)$ using determinants.	(3)
6.	Consider the following system of equations: x + y + z = 6 x - y + z = 2 2x + y + z = 1	
	i) Express this system of equations in the standard form AX = B.	(1)
	ii) Prove that A is non-singular.	(2)
	iii) Find the values of x,y and z satisfying the above system of equations.	(3)
6.	(a) Find the principal values of $\sin^{-1}\left(-\frac{1}{2}\right)$	
	(i) $\frac{\pi}{6}$ (ii) $-\frac{\pi}{6}$ (iii) $\frac{\pi}{3}$ (iv) $-\frac{\pi}{3}$	(1)
	(5) (2) (62)	

(b) Prove that $\sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right)$ (3)

7. (a) Show that
$$\tan^{-1} \left(\frac{\cos x}{1 - \sin x} \right) = \frac{\pi}{4} + \frac{x}{2}$$
. (3)

(b) Solve
$$\tan^{-1} \left(\frac{1-x}{1+x} \right) = \frac{1}{2} \tan^{-1} x, x > 0$$
 (3)

(b) Solve $\tan^{-1}\left(\frac{1-x}{1+x}\right) = \frac{1}{2}\tan^{-1}x, x > 0$ 8. Consider the function $f(x) = \begin{cases} 3ax+b & \text{if } x > 1\\ & \text{if } x = 1\\ 5ax-2b & \text{if } x < 1 \end{cases}$

Find $\lim_{x\to 1^-} f(x)$ and $\lim_{x\to 1^+} f(x)$ (a) (2) Find the constants a and b if f(x) is continuous at x = 1(b) (4) At the point x = 0, the function f(x) = |x| is (c) (a) continuous, but not differentiable (b) differentiable, but not continuous (c) continuous and differentiable (d) neither continuous not differentiable (1) 9. (a) Find $\frac{dy}{dx}$, if (i) If $\sin(xy) + y\cos^2 x = 1$ (3)(ii) Find $\frac{d^2y}{dx^2}$ if $x = a(\theta - \sin \theta)$; $y = a(1 - \cos \theta)$. (3) (iii) If $y = e^{m\cos^{-1}x}$, prove that $(1 - x^2) \frac{d^2y}{dx^2} - x \frac{dy}{dx} - m^2y = 0$ (3) 10. (a) If $y = a^x$, then $\frac{dy}{dx}$ is d) $\frac{dy}{dx} = 1$ c) $x a^{x-1}$ (a) a^x b) $a^x \log x$ (1) (b) If $x^3 + y^3 = 3axy$, find $\frac{dy}{dx}$ (3) Use differential to approximate the value of $(26)^{\frac{1}{3}}$. (c) (3) Which of the following is an always increasing function? 11. (a) (a) logx b) tanx d) x (1) Verify Rolle's theorem for the function $f(x) = x^2 + 2x - 8, x \in [-4, 2]$ (3) (b) A stone is dropped into a guiet lake and waves move in circles at the speed of 5cm/sec. 12. (a) At the instant when the radius of the circular wave is 8cm, how fast is the enclosed area increasing? (3) Find the equation of the tangent line to the curve $y = x^2 - 2x + 7$, which (b) is perpendicular to the line 5y-15x=13. (3) _____

Hsslive.in