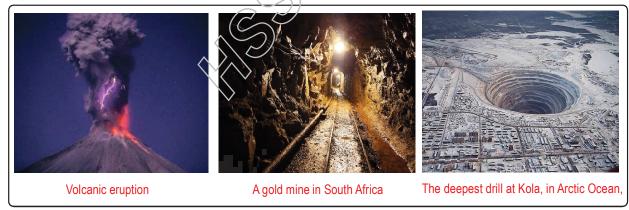
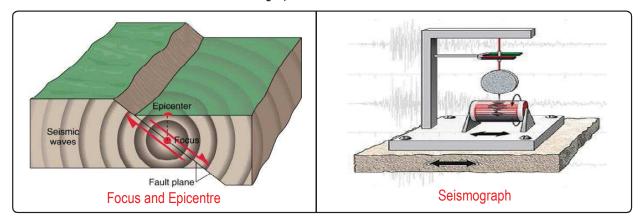
CHAPTER -3 INTERIOR OF THE EARTH


Main Topics :-

- 1) Sources of information of about the earth interior
 - a) Direct sources b) Indirect sources.
- 2) Earth quake
 - a) Earth quake waves b) Propagation of earthquake waves c) Emergence of shadow zone
 - d) Types of earthquakes e) Effects of earthquakes
- 3) Structure of the earth
 - a) Crust, b) Mantle, c) Core
- 4) Volcanoes and volcanic landforms
 - a) Types of volcanoes Shield volcanoes, composite volcanoes, caldera, flood basalt provinces, mid ocean ridge volcanoes
 - b) Volcanic landforms Intrusive forms, plutonic rocks, batholiths, laccoliths, lapolith, phacolith, sills and dykes

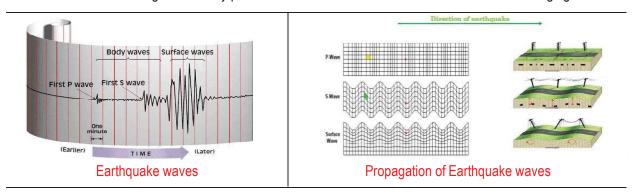
SOURCES OF INFORMATION ABOUT THE EARTH'S INTERIOR

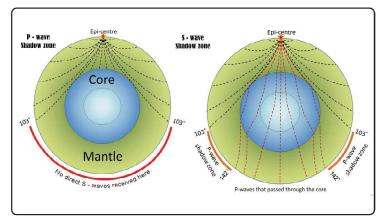
There are two sources of information about interior of the earth – a) Direct Sources and b)Indirect Sources:


DIRECT SOURCES: Mining, drilling and volcanic eruption are some of the examples of direct sources. During the process of mining and drilling rocks and minerals are extracted which gives information that there are layer system in the crust. Crust is made of many kinds of rocks and minerals. Volcanic eruption suggests that there is some zone inside the earth which is very hot and in liquid condition. Direct sources are not very reliable because mining and drilling can be done only up to some depth only. The deepest drill at Kola, in Arctic Ocean, has so far reached a depth of 12 km.

INDIRECT SOURCES: Seismic waves, gravitational field, magnetic field, falling meteors etc are examples of indirect sources. The study of seismic waves provides a complete picture of the layered interior. An earthquake in simple words is shaking of the earth. Movement of seismic waves suggests that there are different layers in the earth and each layer has different density. Density increases toward the center of the earth.

EARTH QUAKES: It is the shaking of the earth, and is a natural event. It is caused due to release of energy which generates waves that travel to all directions. The release of energy occurs along the fault line. Rocks along the fault tend to move in opposite directions as the overlying strata press them thefriction locks them together. However, the tendency of movement overcome the friction. As a result, blocks get deformed. They slide over another: as a result energy releases.


Energy waves travel in all directions. The point where energy releases is called **focus/hypocenter.** The point on the surface, nearest to the focus, is called epicentre. It is the first one to experience the waves. It is a point directly above the focus. An instrument called Seismograph records the waves.

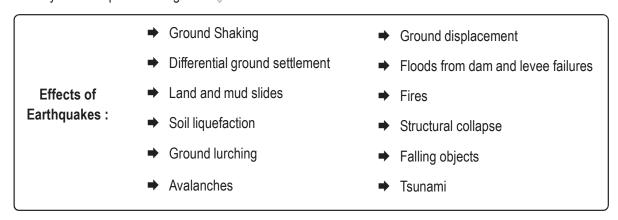

EARTH QUAKE WAVES: When earthquake occurs, it generates waves that travel in all directions. These waves are known as earthquake waves or seismic waves. Earthquake waves are basically of two types — body waves and surface waves. Body waves are generated due to the release of energy at the focus and move in all directions travelling through the body of the earth. Hence, the name body waves. The body waves interact with the surface rocks and generate new set of waves called surface waves. These waves move along the surface. It causes maximum destruction on the earth surface.

There are two types of body waves. They are called P and S-waves. P-waves move faster and are the first to arrive at the surface. These are also called 'primary waves'. The P-waves are similar to sound waves. They travel through gaseous, liquid and solid materials. S-waves arrive at the surface with some time lag. These are called secondary waves. An important fact about S-waves is that they can travel only through solid materials.

PROPAGATION OF EARTHQUAKE WAVES: Different types of earthquake waves travel in different manners. As they move or propagate, they cause vibration in the body of the rocks through which they pass. P-waves vibrate parallel to the direction of the wave. It creates density differences in the material leading to stretching and squeezing of the material. Other waves vibrate perpendicular to the direction of propagation. Hence, they create troughs and crests in the material through which they pass. Surface waves are considered to be the most damaging waves.

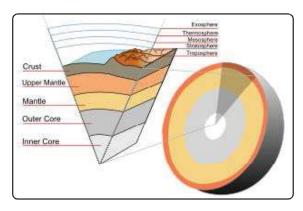
SHADOW ZONES AND THEIR FORMATION: Earthquake waves get recorded in seismographs located at far off locations. But all the places on the earth's surface do not record the seismic waves. There are some zones where seismic waves (P and S waves) do not reach during an earthquake. It is known as shadow zone. It was observed that seismographs located at any distance within 105° from the epicentre, recorded the arrival of both P and S waves.

The seismographs located beyond 145° from epicentre, record the arrival of P-waves, but not that of S-waves. Thus, a zone between 105° and 145° from epicentre was identified as the shadow zone for both the types of waves. The entire zone beyond 105° does not receive S-waves. The shadow zone of S-wave is much larger than that of the P-waves. The shadow zone of P-waves appears as a band around the earth between 105° and 145° away from the epicentre.


TYPES OF EARTHQUAKES

- The most common ones are the tectonic earthquakes. These are generated due to sliding of rocks along a fault plane.
- A special class of tectonic earthquake is sometimes recognised as volcanic earthquake. However, these are confined to areas of active volcanoes.
- In the areas of intense mining activity, sometimes the roofs of underground mines collapse causing minor tremors. These are called collapse earthquakes.
- ➤ Ground shaking may also occur due to the explosion of chemical or nuclear devices. Such tremors are called explosion earthquakes.
- > The earthquakes that occur in the areas of large reservoirs are referred to as reservoir induced earthquakes.

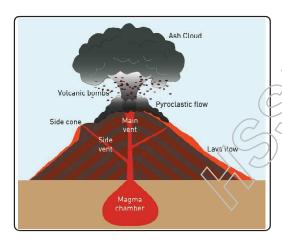
MEASURING EARTHQUAKES


Richter Scale: It is an scale which measures the magnitude of an earthquake. In other words, energy released by an earthquake is measured on Richter Scale. Generally, it is from 0 to 10. An earthquake measuring 6 on Richter Scale is 10 times more stronger than 5 and 100 times more stronger than 4.

MercalliScale: The intensity scale is named after Mercalli, an Italian seismologist. It measures the destruction caused by an earthquake. It ranges from 1 to 12.

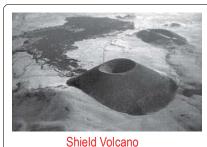
The first six listed above have some bearings upon landforms, while others may be considered the effects causing immediate concern to the life and properties of people in the region. The effect of tsunami would occur only if the epicentre of the tremor is below oceanic waters and the magnitude is sufficiently high. Tsunamis are waves generated by the tremors and not an earthquake in itself.

THE STRUCTURE OF THE EARTH



THE CRUST: The Outer most solid part, brittle in nature, The mean thickness of oceanic crust is 5 km whereas that of the continental is around 30 km. The continental crust is thicker in the areas of major mountain systems. It is as much as 70 km thick in the Himalayan region. It is made up of heavier rocks having density of 3 g/cm3. This type of rock found in the oceanic crust is basalt. The mean density of material in oceanic crust is 2.7 g/cm3.

THE MANTLE: Second layer from the top of the earth, it extends from Moho-discontinuity to a depth of 2900 km, the upper portion of the mantle is called ASTHENOSPHERE, (Astheno means weak) it extends up to 400 km, it is the source of magma, average density is 3.4g/cm3, crust and upper most part of the mantle is called Lithosphere. Its thickness is 10 -200km, lower mantle is in solid state.


THE CORE: It extends from 2900 km to 6300 km depth, outer core is liquid while inner core is solid, outer core density is 5 g/cm3 inner core is 13 g/cm3, made of heavy metals such as Nickel and Iron, it is also called as NIFE layer.

VOLCANOES AND VOLCANO LANDFORMS

A volcano is place where gases, ashes and or molten rock escape to the ground. A volcano is called an active volcano if the materials mentioned are being released or have been released out in the recent past. The layer below the solid crust is mantle. It has higher density than that of the crust. The mantle contains a weaker zone called asthenosphere. It is from this that the molten rock materials find their way to the surface. The material in the upper mantle portion is called magma. Once it starts moving towards the crust or it reaches the surface, it is referred to as lava.

ACTIVE, DORMANT AND EXTINCT VOLCANOES: Active Volcano: It is a type of volcano that is currently erupting or shows signs of unrest activities, like earthquake activity or significant amounts of gas discharged. **Dormant Volcano:** It is a volcano that is not presently erupting, but has erupted in the past is considered likely to do erupt in the future again. These volcanoes are also called "Sleeping"volcanoes because it is presently inactive, but could erupt again. **Extinct Volcano:** It is a volcano that is presently not erupting, that is unlikely to do so for a very long time in the future.

D : : DK HOOT O

Classification of volcanoes based on nature of eruption and land forms developed on the surface.

SHIELD VOLCANO

- → Largest of volcanoes
- → Hawaiian Islands are best examples
- → Basalt lava flow
- → Lava is very fluid
- → They are not steep
- ➡ Become explosive when water is held in tovent
- → Develops in to cinder cone

FLOOD BASALT PROVINCES

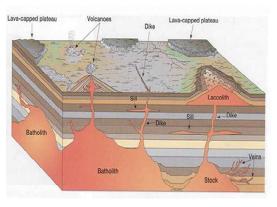
- → Consists of highly fluid lava
- → Covered by thousands of sq.km of basalt
- → There can be series of flows
- → Average thickness is more than 50km
- → Individual flow is 100 of sq.k.m.
- ⇒ Example : Deccan plateau

COMPOSITE VOLCANOES

- Cool and more viscous lava
- → Explosive eruptions
- ➡ They erupt pyroclastic and ashes along with lava
- → Layers are formed

CALDERA

- → These are the most explosive type of volcanoes
- → They collapse themselves and form into lakes
- → The magma chamber is huge and found nearby


MID OCEAN RIDGE VOLCANOES

- → Found in oceanic surfaces
- → More than 70,000 km length
- ➡ Frequent volcanic eruptions
- → Example : Mid Atlantic ridge

INTRUSIVE VOLCANIC LANDFORMS

- ➡ When volcanic eruption takes place some lava comes out and some settle down in the lithosphere.
- → When lava comes out forms volcanic rocks, some part cools down in the lower portion forms plutonic rocks
- ➡ Intrusive forms occur inside the crust.

BATHOLITH - A large part of the magma material that cools in the deeper depthof the crust. They are domeshaped, cover large areas, they come out when erosion takes place they are granite bodies. LACOLITHS - large dome shaped intrusive bodies. Connected through pipe like conduit from below it resembles composite volcanoes found deeperdepthsthey are localised source of lava. Example: Karnataka plateau. LAPOLITHS - concave shaped lava formation. PHACOLITHS - wave typed lava formation. SILL - horizontal sheet of lava. DYKES - vertical lava formation

