HIGHER SECONDARY EXAMINATION, MARCH 2018

PHYSICS(new Pattern)

Second year ,March 2018

key with hints (Anoop chandran)

- **1.** Force $F_1 = \frac{1 q_1 q_2}{4\pi \epsilon_0 r^2}$ and $F_2 = \frac{1 q_1 q_2}{4\pi K \epsilon_0 r^2}$ and therefore; $F_1/F_2 = K/1 \rightarrow K:1(a)$
- 2. As per charge quantisation charge on any body is the integral multiple of fundamental charge e

Q= \pm ne or Q cannot be less than $e = 1.6x10^{-19}C$. (d)

- **3.** (a)Carbon
- **4.** Current in purely inductive or capacitive circuit does not do any work, since power dissipation in these Circuits are ZERO. Such a Current is called as a **WATTLESS CURRENT.**

Power P = V_{rms} x I_{rms} x $cos\phi$ (In Puerly inductive and capacitive circuit $\phi = 90^{\circ}$)

- 5. $M^{-1}L^{-3}T^4I^2$
- $\textbf{6.} \ Soft \ iron-Low \ coercivity/ \ High \ Retentivity \ / \ used \ for \ making \ Electromagnets.$

Steel – High coercivity / Low retentivity / used for making Permanent magnets.

- **7.** 8O¹⁶
- **8.** Phenomenon is total internal reflection.

Snells Law is given by $\sin i \sin r = n_{21} = n_2/n_1$ [½ score]

For TIR if i = c critical angle and $r = 90^{\circ}$ [½ score]

Sin c /Sin 90 = 1/n {For air $n_2 = 1$ } [½ score]

Sin c = 1/n Or n = 1/Sin c [$\frac{1}{2}$ score]

- **9.** (a) Micro waves \rightarrow Infrared waves \rightarrow Visible light \rightarrow X Rays {increasing order of frequency}
 - (b) One correct application of each. Eg: Infrared : Remote sensing $\, X Ray$: Clinical diagnostics
- **10.** Work done = τ .d θ [½ score]

 $\tau = P X E \text{ or } PE \sin\theta$ [½ score]

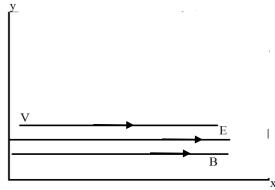
 $dw = PESin\theta.d\theta$

 $W = \int_{\theta_*}^{\theta_2} PE \sin \theta . d\theta \qquad [\frac{1}{2} \text{ score }]$

 $W = PE (Cos\theta_1 - Cos\theta_2)$ [½ score]

- **11.** (a) $2m/\pi$
 - (b) Keep bar A horizontally on a table and touch its end and center point with end of bar B if it will attract Bar A on these three points, we can conclude that bar A is softiron and B is magnet. Magnet has

Magnetic field concentrated at its ends.


- **12.** (a) 931 Mev
 - (b) $\beta \rightarrow \alpha \rightarrow \gamma$
- **13.** 1 − e
 - 2-d
 - 3 b
 - 4 f
- **14.** For series connection R = nR = 10R

Parallel Connection R = R/n = R/10

- 15. i)NOR gate
 - ii) NAND gate
- **16.** (a) i) FALSE
- ii) FALSE
- (b) Correct derivation and $E_a = \sigma/\epsilon_0$
- 17. (a) Question is **IMPORTANT**

Path will be **STRAIGHT LINE**. It is because, assume that the electric field is acting along X – axis. Since charged particle is released from rest it experiences an **electric force** in the direction or in opposite direction of that of electric field depending on nature of charge that is along X – axis (towards right or be towards left). This motion of charge particle in electric field in turn creates a Magnetic field. But the **magnetic Lorentz force on the Particle is ZERO**, as Magnetic field and Motion of charge are in same direction. (Parallel / antiparallel)

🚵 HSSLiVE.IN

Since $F = qVBSin\theta$ Here, $\theta = 0^{\circ}$ or 180^{0} Parallel or antiparallel.

So motion is only due to electric force. – **Straight line.** [1 score]

(b) Correct Derivation as per NCERT

[2 score]

18. (a) $\frac{1}{2}$ mV_{max}² = hv - hv_o

m , h , and υ_0 are constant for a given metal. Hence

$$V_{max}^2 \alpha \nu$$

$$V_{max}^2 \alpha c / \lambda$$

$$V \propto 1 / \lambda$$
 If wavelength of light decreased velocity of photoelectrons **increases** [1 score]

(b)
$$\lambda = \frac{12.3}{\sqrt{V}} A^{\circ}$$
 [1 score]

$$\lambda = 12.3 / \sqrt{10} = 12.3 / 10 = 1.23 A^{\circ}$$
 Result with correct unit [1score]

19. (a)correct derivation with final equation $W = \frac{1}{2} \operatorname{Li_0}^2$

[1½ score]

(b) According to Faraday's Law of electromagnetic induction,

 $\varepsilon = -d\phi/dt$ But $\phi = Li$; where L is the self inductance.

Emf, E =
$$\frac{-d}{dt}(Li)$$
 = - L $\frac{di}{dt}$

If di/dt = 1 (unit rate of change of current in the circuit)

Emf $\varepsilon = -L$ \rightarrow Numerically equal, but directionally opposite. (PROVED) [1½ score]

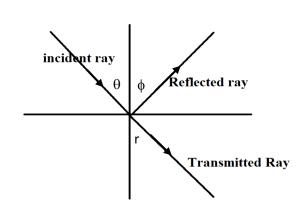
20.(a) (d) or 0.05mA

$$I_E = I_C + I_B$$

$$\mathbf{I}_{\mathbf{B}} = \mathbf{I}_{\mathbf{E}} - \mathbf{I}_{\mathbf{C}} \Rightarrow \mathbf{I}_{\mathbf{B}} = 1 - 0.95 \text{mA} = \mathbf{0.05 \text{mA}}$$
 [1 score]

(b) The diagram given is a **Zener Diode** [1 score]

Used for **Voltage Regulation** [1score]


Explanation:

21. Orthogonal means Perpendicular.

By Brewester's Law,
$$Tan\theta = n$$

$$\frac{\sin\theta}{\cos\theta} = n$$

By laws of reflection $\theta = \phi$ (see fig.)

$$\therefore \frac{\sin \theta}{\cos \phi} = n$$

$$\therefore \frac{\sin \theta}{\sin (90 - \phi)} = n$$
By Snells Law $\frac{\sin \theta}{\sin r} = n$ (1)

By comparing (1) and (2) we get,

$$90 - \phi = r$$

Or $r + \phi = 90^{\circ}$ reflected and transmitted rays are Perpendicular / orthogonal. [2 score]

(b) Light waves are Transverse waves. Only Transverse waves show polarization.

- **22.**Correct derivation of equation for finding out the internal resistance as $\mathbf{r} = \mathbf{R} \left(\frac{l_1}{l_2} \mathbf{1} \right)$ [3 score]
- **23.**(a) iv) Helps to guide light signals to core.

(b) Coverage Range,
$$d = \sqrt{2hR} = \sqrt{2 \times 100 \times 6.37 \times 10^6} = 35.7$$
Km
Population covered = Population density x covered area

$$= 1000 \times \pi d^2 = 1000 \times \pi x (35.7)^2$$
$$= 4.0 \times 10^6$$

- (c)6MHz
- 24. (a) Cadmium
 - (b) 931 MeV
 - (c) basic equation is $N = N_0 e^{-\lambda t}$

Or
$$(N/N_0) = (1/2)^n$$

$$(0.1/0.75) = (\frac{1}{2})^n$$
 taking log on both side and calculating we get $n = 2.9 = 3$
 $n = t/T_{1/2}$ = $t = 3x3.823 = 11.46 days.$

25.(a)
$$P/Q = R/S$$

$$9/11 = 4/S = S = (4x11)/9 = 44/9$$

$$1/S = 1/6 + 1/R$$
 \Rightarrow $9/44 = 1/6 + 1/R$ Solving $\mathbf{R} = 132/5 = 26.4\Omega$

(b)Correct statement = algebraic sum of potential around any closed loop involving resistors and

Cell in the loop is ZERO.

- **26.(a)**When accelerating potential increases, photocurrent increases and reaches a maximum value or it saturates. When we apply a negative Photoelectrons get retarded hence photocurrent decreases. At a particular potential It becomes Zero called **Stopping potential/cut off Potential.**
 - (b) Since green light emit electrons the frequency of green light is the **Threshold frequency.**Yellow light doesnot emitt means, Frequency below green does not allow photoelectric emission.

 And above frequencies allows the same.
 - So, **Emission occurs** for Blue light and **no emission for** Red light.

27.(a)Total Internal Reflection.

(b)Refer Qn.8

- (c) i)Light should travel from denser to rarer medium.
 - ii) Angle of incidence should be greater than the critical angle.

28.(a)Correct statement or equation
$$db = \frac{\mu_0}{4\pi} \frac{idl \, sin\theta}{r^2}$$

- (b) Correct derivation with final equation as dB = $\frac{\mu_0 i R^2}{(R^2 + x^2)^{\frac{3}{2}}}$
- 29. (a)Correct Explanation with figure
 - (b) Let D be the distance b/w slit and screen,

Anoop Chandran

Anoopchandrac17@gmail.com