Chapter 3

INTERIOR OF THE EARTH

- The earth radius is 6370 km
- Most of our knowledge about the interior of earth is largely based on estimates and inferences.
- Information is obtained through
 - **DIRECT SOURCES**
 - INDIRECT SOURCES.

DIRECT SOURCES

- > The most easily available solid material is surface rock or rocks we get from mines
- Volcanic eruption forms
- Scientists world over are working TWO PROJECTS
 - DEEP OCEAN DRILLING OROJECT
 - ❖ INTEGRATED OCEAN DRILLING PROJECT
 - * The deepest drill at KOLA, in Arctic Ocean a depth of 12 km. These projects provided large volume of information

INDIRECT SOURCES

Meteors – similar to that of the earth.
Gravitation.
Magnetic field.
Seismic activity.

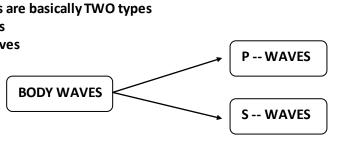
EARTHQUAKE

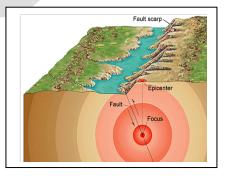
- An earthquake is simple words is shaking of the earth.
- It is a natural event.
- It is caused due to release of energy occurs along a fault.
- Rocks along a fault tend to move in opposite directions.

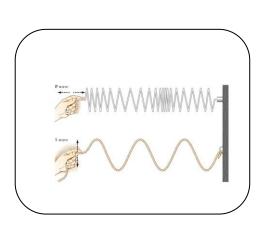
FOCUS / HYPOCENTRE

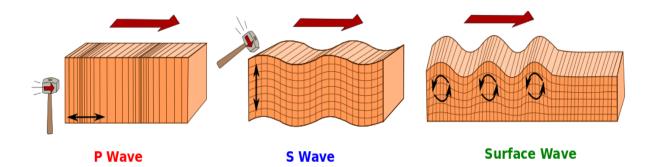
The point where the energy is released.

EPICENTRE


The point on the surface directly above the focus.


EARTHQUAKE WAVES


- > All natural earthquakes take place in lithosphere.
- Lithosphere refers to the portion of depth up to 200 kms from the surface of the earth.

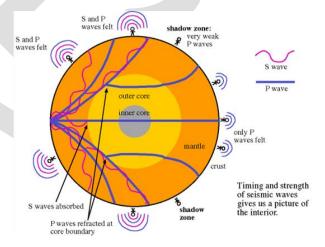

SEISMOGRAPH

- An instrument records the waves reaching the surface.
- Earthquake waves are basically TWO types
 - 1. Body waves
 - 2. Surface waves

P- WAVES/PRIMARY WAVES

- Move faster
- First arrive at the surface
- They travel through gaseous, liquid and solid forms
- Similar to sound waves

S- WAVES/SECONDARY WAVES


- Arrive at the surface with some time lag
- It travel only through solid materials.
- It has helped to understand the interior of the earth.

SURFACE WAVES

- The last to report on seismograph.
- These are more destructive.
- They cause displacement of rocks and collapse of structures.

SHADOW ZONE

Some specific areas where the waves are not reported such a zone is called shadow zone

TYPES OF EARTHQUAKES

- 1. Tectonic due to sliding of rocks
- 2. Volcanic confined to areas of volcanoes
- 3. Collapse roofs of mines collapse
- 4. Explosion explosion of chemical or nuclear devices
- 5. Reservoir induced occur in the areas of large reservoirs

MEASURING EARTHQUAKES

Earthquakes are measured according to

- 1. Magnitude
- 2. Intensity

MAGNITUDE

- The magnitude relates to the energy released during the quake
- Magnitude scaled in RICHTER SCALE
- Expressed in absolute numbers 0 -10
- Richter scale invented by RICHTER

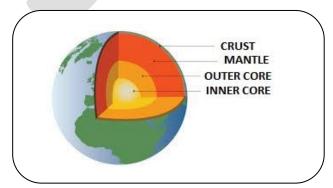
INTENSITY

- Intensity scale takes into account the visible damage caused by the event
- Intensity scaled in Mercalli scale
- The range of intensity scale is from 1-12
- Mercalli scale invented by MERCALLI

EFFECTS OF EARTHQUAKES

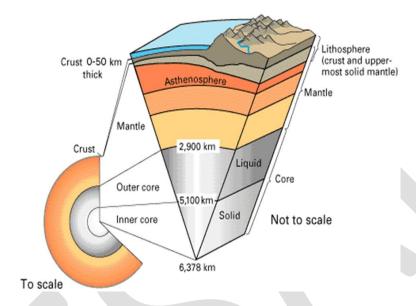
- 1. Ground shaking
- 2. Differential ground settlement
- 3. Land and mud slides
- 4. Soil liquefaction
- 5. Avalanches
- 6. Ground displacement
- 7. Floods from dam and levee failures
- 8. Fires
- 9. Structural collapse
- 10. Falling objects
- 11. Tsunami

STRUCTURE OF THE EARTH

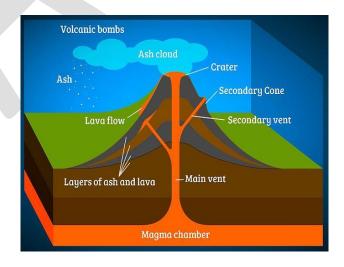

- 1. THE CRUST
- 2. THE MANTLE
- 3. THE CORE

THE CRUST

- It is the outermost solid part of the earth.
- The thickness of the crust varies under the oceanic and continental areas.
- Oceanic crust is thinner as compared to continental crust
- The mean thickness of oceanic crust is 5 km whereas continental is 30 km, in major mountain areas 70 km
- The oceanic crust is made up heavier rocks like Basalt, the density of 3 g/cm³


THE MANTLE

- It is the second layer, beyond the crust.
- The mantle extends from Mohos discontinuity to a depth of 2900 km.
- The upper portion of mantle is called Asthenosphere. It is to be extending up to 400 km. It is the main source of Magma
- The crust and the uppermost part of the Mantle is called Lithosphere. Its thickness 10 − 200 km
- The lower mantle extends beyond the Asthenosphere, it is in solid state.


THE CORE

- Inner most layer
- The core is made up of very heavy material, sometimes referred as NIFE layer (Nickel + Iron)
- The outer core is in liquid state.
- The inner core is in solid state.
- The density is around 13 g/cm³

VOLCANOES

- A volcano is a place where gases, ashes and lava escape to the ground.
- Active volcano have been released out in the recent past
- The material in the upper mantle portion is called Magma. Once it reaches the surface called as Lava.
- The material that reaches the ground lava, pyroclastic debris, bombs, ash, dust and gases ... (nitrogen, hydrogen, argon, chlorine, sulphur....)
- A volcano is a place where gases, ashes and lava escape to the ground.
- Active volcano have been released out in the recent past
- The material in the upper mantle portion is called Magma. Once it reaches the surface called as Lava.
- The material that reaches the ground lava, pyroclastic debris, bombs, ash, dust and gases ... (nitrogen, hydrogen, argon, chlorine, sulphur....)

TYPES OF VOLCANOES

- 1. Shield Volcanoes
- 2. Composite Volcanoes
- 3. Caldera
- 4. Flood Basalt Provinces
- 5. Mid Ocean Ridge Volcanoes

SHIELD VOLCANOES

- The shield volcanoes are the largest of all the volcanoes
- These are mostly made up of Basalt
- They became explosive if somehow water gets in to the vent
- The upcoming lava moves in the form of a fountain and develops in to cinder cone
- The Hawaiian volcanoes are the most famous examples.

COMPOSITE VOLCANOES

- These are characterised by eruptions of cooler and more viscous lavas than basalt.
- Along with lava, large quantities of pyroclastic material and ashes find their way to the ground, this leads to the formation of layers at the vent.

CALDERA

- These are the most explosive volcanoes.
- When they erupt they tend to collapse on themselves rather than building any tall structure.
- The collapsed depressions are called Calderas.

FLOOD BASALT PROVINCES

- These volcanoes outpour highly fluid lava that flows for long distances, covered by 1000 sq.km of thick basalt lava flows.
- There can be series of flows with some flows attaining thickness of more than 50 m.
- Example: Deccan traps.

MID-OCEAN RIDGE VOLCANOES

- These volcanoes occur in the oceanic areas.
- The central portion of ridge experiences frequent eruptions.
- There is a system of mid ocean ridges more than 70000 km long that stretches through all the ocean basins.

VOLCANIC LANDFORMS

- Depending on the location of cooling of the lava Igneous rocks are classified as
 - ➤ Volcanic Rocks- cooling at the surface.
 - Plutonic Rocks- cooling in the crust.
- > The lava that cools within the crustal portions assumes different forms. These forms are called *Intrusive forms*

BATHOLITHS

- A large body of magnetic material that cools deeper depth in the form of large domes.
- > They cover large areas and depth may be several km.
- > These are granitic bodies.
- Batholiths are the cooled portion of magma chambers.

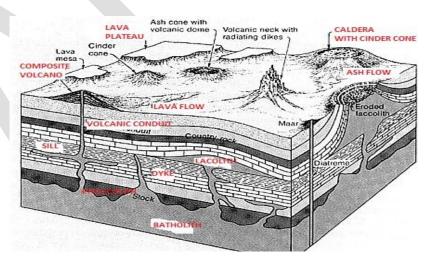
LACOLITHS

- These are dome-shaped rocks with a level base and connected by a pipe-like conduit from below.
- These are located at deeper depths.
- The Karnataka plateau is spotted with Domal hills of granite rocks, now these are exfoliated, are the examples of LACOLITHS and BATHOLITHS

LAPOLITH

Saucer shape intrusive rocks.

PHACOLITH


A wavy mass of intrusive rocks, is found at the base of Synclines or at the top of Anticlines.

SILL AND SHEET

- The near horizontal bodies of the intrusive rocks are called sill or sheet.
 - ✓ The thick horizontal deposits are called SILLS.
 - √ The thinner ones are called SHEETS

DYKES

- When the lava cooled in the cracks and fissures to develop a wall-like structure. Such structures are called dykes
- Commonly found in the western Maharashtra

AFSAL.T HSST GEOGRAPHY GVHSS PULLANUR- 11133 VALLUVAMBRAM, MALAPPUARAM. 9809088221.