ELECTRONICS

Class - XI

Government of Kerala Department of Education

Prepared by
State Council of Educational Research and Training (SCERT), Kerala
2014

Guidelines for the Preparation of Question Paper for Higher Secondary Education 2014-15

Introduction

Term evaluation is an important aspect of Continuous and Comprehensive Evaluation (CCE). It covers the **assessment of learning** aspect of the CCE. The Kerala School Curriculum 2013 postulated that the examination system should be recast so as to ensure a method of assessment that is a valid, reliable and objective measure of student development and a powerful instrument for improving the learning process. The outcome focused written tests are being used as tools for terminal assessment. Practical assessment is also considered for some subjects. The syllabus, scheme of work, textual materials, teacher texts and learning experiences may be considered while developing tools for term evaluation.

In order to make the examination system effective and objective, quality of the question paper needs to be ensured. Questions of different types considering various learning outcomes, thinking skills and of varying difficulty levels are to be included in the question paper. This makes question paper setting a significant task that has to be undertaken with the support of proper guidelines.

The guidelines for the preparation of the question paper have been divided into four heads for its effective implementation and monitoring. The areas are i) preparatory stage, ii) nature of questions, iii) question paper setting and iv) structure of the question paper.

I. Preparatory stage

Before starting the process of question paper setting, the question paper setter should ensure that she/he has:

- Familiarised the current syllabus and textbook of the concerned subject.
- secured the list of LOs (Learning Outcomes) relating to the subject.
- acquired the list of thinking skills applicable to the subject.
- prepared a pool of questions from each unit of the subject.
- verified the scheme of work and weight of score for each unit/lesson.
- gone through guidelines for the preparation of question paper for higher secondary education 2014-15.

II Nature of questions

Questions selected from the pool to be included in the question paper should reflect the following features:

- stem of the question text should be relevant to the question posed.
- multiple choice questions should be provided with four competitive distracters.
- the possibilities of higher order thinking skills should be considered while setting MCQs
- time allotted for each question should be justified according to the thinking skills involved.
- the scope and length of the answer should be clearly indicated.

- questions should be prepared by considering the learning level of the learner.
- the question should focus on the learning outcomes.
- a wide range of thinking skills and learning outcomes from each unit/lesson should be considered.
- varied forms of questions should be covered.
- there should be a balance between the time allotted and the level of question.
- question should be very specific and free from ambiguity.
- question text should not be too lengthy and complicated.
- questions can be prepared based on a single or a cluster of learning outcomes which is scattered over one particular unit or units.
- cluster of learning outcomes from different units can be considered only for graded questions (questions with sub-divisions).
- the possibilities of graded questions reflecting different thinking skills can be explored.
- while preparing questions for language papers importance should be given to the language elements, language skills, discourses, textual content and elements of creativity.
- while preparing questions for subjects other than languages, importance should be given to content, concepts and skills.
- questions should cater the needs of differently abled learners and CWSEN (Children With Special Education Needs)
- the questions should contain varied forms such as objective type with specific focus to multiple choice test items and descriptive types (short answer and essay types).
- directions regarding the minimum word limit for essay type questions should be given.
- sufficient hints can be provided for essay type questions, if necessary.
- maximum usage of supporting items like pictures, graphs, tables and collage may be used while preparing questions.
- questions which hurt the feelings of caste, religion, gender, etc. must be completely avoided.

III. Question paper setting

During the process of question paper setting the question setter should:

- prepare a design of the question paper with due weight to content, learning outcomes, different forms of questions and thinking skills.
- prepare a blue print based on the design.
- prepare scoring key indicating value points and question based analysis along with the question paper.
- while preparing scoring key, thinking skills should also be integrated.
- 60% weight should be given to thinking skills for conceptual attainment and 40% to thinking skills for conceptual generation.
- 15 to 20% weight of total scores must be given to objective type questions and up to 20% weight of total score must be given to essay type questions.

- the highest score that can be given to a question in the question paper is limited to 10% of the total score.
- while fixing the time for answering a question, time for reading, comprehending and writing the answer must be considered.
- The total time limit of the question paper two hours for 60 scores and 2.30 hours for 80 scores question papers with an extra cool-off time of 15 minutes.

IV. Structure of the question paper

The question paper should reflect the following features in general:

- general instructions for the question paper should be given on the top.
- instructions for specific questions can be given before the question text.
- monotony of set patterns (objective or descriptive) should be avoided.
- questions should be prepared in bilingual form.
- there should not be any mismatch between the bilingual versions of the questions.
- choice can be given for questions up to 20% of the total score.
- while giving choice, alternative questions should be from the same unit with the same level of thinking skills.
- in the case of languages, language of the questions and answers should be in the particular language concerned. Necessary directions in this regard must be given in the question paper.

THINKING SKILLS

Category/ processes	Alternative terms
1. Remember	Retrieve relevant knowledge from long-term memory
1.1. Recognising	identifying- (e.g. Recognize the dates of important events in Indian history)
1.2. Recalling	retrieving - (e.g. Recall the major exports of India)
2. Understand	Construct meaning from instructional messages, including oral, written and graphic information
2.1. Interpreting	clarifying, paraphrasing, representing, translating (e.g. Write an equation [using B for the number of boys and G for the number of girls] that corresponds to the statement 'There are twice as many boys as girls in this class')
2.2. Exemplifying	illustrating, instantiating (e.g. Locate an inorganic compound and tell why it is inorganic)
2.3. Classifying	categorizing, subsuming (e.g. Classify the given transactions to be recorded in Purchase returns book and Sales returns book)
2.4. Summarising	abstracting, generalizing (e.g. Students are asked to read an untitled passage and then write an appropriate title.)
2.5. Inferring	concluding, extrapolating, interpolating, predicting (e.g. a student may be given three physics problems, two involving one principle

and another involving a different principle and ask to state the underlying principle or concept the student is using to arrive at the correct answer.)
contrasting, mapping, matching (e.g. Compare historical events to contemporary situations)
constructing models (e.g. the students who have studied Ohm's law are asked to explain what happens to the rate of the current when a second battery is added to a circuit.)
Carry out or use a procedure in a given situation
Carrying out (e.g. Prepare Trading and Profit and loss Account from the Trial Balance given and find out the net profit.)
using (e.g. Select the appropriate given situation where Newton's Second Law can be used)
Break material into its constituent parts and determines how the parts relate to one another and to an overall structure or purpose
discriminating, distinguishing, focusing, selecting (e.g. distinguish between relevant and irrelevant numbers in a mathematical word problem)
finding coherence, integrating, outlining, parsing, structuring (e.g. the students are asked to write graphic hierarchies best corresponds to the organisation of a presented passage.)
deconstructing (e.g. determine the point of view of the author of an essay in terms of his or her ethical perspective)
Make judgements based on criteria and standards
coordinating, detecting, monitoring, testing (e.g. after reading a report of a chemistry experiment, determine whether or not the conclusion follows from the results of the experiment.)
judging (e.g. Judge which of the two methods is the best way to solve a given problem)
Put elements together to form a coherent or functional whole; reorganize elements into a new pattern or structure
hypothesizing (e.g. suggest as many ways as you can to assure that everyone has adequate medical insurance)
designing (e.g. design social intervention programmes for overcoming excessive consumerism)
constructing (e.g. the students are asked to write a short story based on some specifications)

Considering the intellectual level of learners, while setting the question paper;

- 1. 60% weight may be given to thinking skills used for factual and conceptual attainment and
- **2. 40**% **weight may be given to thinking skills for conceptual generation** (higher thinking skills has to be ensured in this category). Thinking skills for conceptual generation means thinking skills needed for elaborating the concepts.

Refer the range of thinking skills given above. We can include the thinking skills no.1.1 to 3.2 (11 processes) under first category and 4.1 to 6.3 (8 processes) under second category.

Guide lines for setting question paper - Electronics

- 1. Multi level questions should be promoted.
- 2. The weight of objective questions should be between 15%-20% of Total score and it should carry one score
- 3. The weight of essay question should be between 15%-20% of Total score and it should carry four or five scores
- 4. The short answer question should carry two or three scores.
- 5. The content/problems given as box item in the SCERT text book should not be used for term end evaluation.
- 6. Derivation should be included for 20% 25% of Total score.
- 7. Numerical problems should be included for 15% 20% of Total score.
- 8. Graph, diagrams and pictures should be included in the questions wherever necessary.
- 9. Specific hints should be included in the questions if needed.

Reg. No:	 CDT 4
Name :	 SET-1

March 2015 Part - III
ELECTRONICS

Maximum: 60 Scores

Time: 2h

Cool off time: 15 Minutes

General Instructions to candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 h.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary
- Electronics devices except nonprogrammable calculators are not allowed in the Examination Hall.

പൊതുനിർദ്ദേശങ്ങൾ

F.Y.

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയം വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരെഞ്ഞെടുത്ത് കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പ രിൽ നിന്ന് തന്നെ തെരെഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴുകെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കാൻ പാടില്ല.
- 1. The resistance offered by a Capacitor to a signal is known as capacitive reactance.
 - (a) Give the expression for capacitive reactance (1)
 - (b) The reactance offered by a capacitor to a dc signal is.... (1)
 - (c) Find the reactance offered by a 10μF capacitor to a sine wave of frequency 100kHz(2)
- 2. The variation in resistance during manufacturing is indicated by tolerance. What is the tolerance indicated by gold color? (1)

- ഒരു സിഗ്നലിനെതിരെയുള്ള കപ്പാസിറ്ററിന്റെ പ്രതിരോധത്തെയാണ് കപ്പാസിറ്റീവ് റിയാ ക്ടൻസ് എന്ന് വിളിക്കുന്നത്.
 - (a) കപ്പാസിറ്റീവ് റിയാക്ടൻസിന്റെ സമവാക്യ മെഴുതുക. (1)
 - (b) ഒരു dc സിഗ്നലിനെതിരെയുള്ള കപ്പാസി റ്ററിന്റെ പ്രതിരോധം ആണ്. (1)
 - (c) ഒരു 100KHz സിഗ്നലിനെതിരെയുള്ള 10μF കപ്പാസിറ്ററിന്റെ റിയാക്ടൻസ് കണ്ടു പിടിക്കുക. (2)
- റസിസ്റ്റൻസുകൾ നിർമിക്കുമ്പോൾ ഉണ്ടാകുന്ന വ്യതിയാനത്തെ സൂചിപ്പിക്കുവാൻ ടോളറൻസ് ഉപയോഗിക്കുന്നു. ഗോൾഡ് കളർ സൂചിപ്പി ക്കുന്ന ടോളൻസ് എത്രയാണ്? (1)

- 3. We cannot construct an ideal voltage source for a circuit.
 - (a) What is the difference between an ideal and practical voltage sources?(2)
 - (b) How can we convert a practical voltage source into a practical current source? (2)
- 4. A series RLC circuit can resonate at a particular frequency.
 - (a) Find the frequency at which resonance happens. (2)
 - (b) What will be the impedance of the circuit at resonance? (2)
- 5. The doping is used to increase the conductivity of a semiconductor.
 - (a) Give one example for pentavalent and trivalent impurities (2)
 - (b) At room temperature, a semiconductor has very small conductivity. Give reasons (2)
- When a P type and N type semiconductors are joined to form a PN junction, the depletion region is created.
 - (a) Give the reason for the formation of depletion region (3)
 - (b) What happens to the width of the depletion region under forward and reverse bias? (2)
 - (c) How much voltage is required to nullify the depletion region of a Germanium diode?
 - (a) 0.7 V, (b) 0.3 V (c) 0.1 V (d) IV (1)
- 7. The input characteristics of a CE configuration and the forward VI characteristics of a diode look similar. Give reason. (3)

- നമുക്ക് ഒരു ഐഡിയൽ വോൾട്ടേജ് സോഴ്സ് ഉണ്ടാക്കുവാൻ സാധിക്കില്ല.
 - ഒരു ഐഡിയൽ വോൾട്ടേജ് സോഴ്സും ഒരു പ്രാക്ടിക്കൽ വോൾട്ടേജ് സോഴ്സും തമ്മിലുള്ള വൃത്യാന്തമന്ത്? (2)
 - (b) ഒരു പ്രാക്ടിക്കൽ വോൾട്ടേജ് സോഴ്സിനെ പ്രാക്ടിക്കൽ കറന്റ് സോഴ്സായി മാറ്റുന്നതെങ്ങനെ? (2)
- ഒരു സീരീസ് RLC സർക്ക്യൂട്ട് ഒരു പ്രത്യേക ഫ്രീക്വൻസിയിൽ റെസൊണേറ്റ് ചെയ്യുന്നു.
 - (a) റെസൊണൻസ് സംഭവിക്കുന്ന ഫ്രീകൻസി കണ്ടുപിടിക്കുക. (2)
 - (b) റെസൊണൻസിലായിരിക്കുന്ന ഒരു സർക്ക്യൂട്ടിന്റെ ഇംപീഡൻസ് എത്രയായി രിക്കും. (2)
- ഡോപ്പിംഗ് ഉപയോഗിച്ച് ഒരു സെമികൺഡക്ട റിന്റെ കൺഡക്ടിവിറ്റി വർദ്ധിപ്പിക്കാൻകഴിയും.
 - (a) പെന്റാവാലന്റ് ഇംപ്യൂരിറ്റിയ്ക്കും ട്രൈവാ ലന്റ് ഇംപ്യൂരിറ്റിയ്ക്കും ഓരോ ഉദാഹര ണം എഴുതുക.
 - (b) സാധാരണ താപനിലയിൽ ഒരു സെമി കൺഡക്ടറിന് വളരെ ചെറിയ കൺഡ ക്ടിവിറ്റി ആണ്. കാരണമെഴുതുക. (2)
- ഒരു P ടൈപ്പ് സെമികൺഡക്ടറും N ടൈപ്പ് സെമികൺഡക്ടറും ചേർത്ത് PN ജംക്ഷൻ ഉണ്ടാക്കുമ്പോൾ ഡിപ്ലീഷൻ റീജിയൻ ഉണ്ടാ കുന്നു.
 - (a) ഡിപ്ലീഷൻ റീജിയൻ ഉണ്ടാവുന്നതിന്റെ കാരണമെന്ത്? (3)
 - (b) ഫോർവേർഡ് ബയിസിലും റിവേഴ്സ് ബയസിലും ഡിപ്ലീഷൻ റീജിയനിലുണ്ടാ കുന്ന മാറ്റമെന്ത്? (2)
 - (c) ഒരു ജർമേനിയം ഡയോഡിന്റെ ഡിപ്ലീ ഷൻ റീജിയൻ ഇല്ലാതാക്കുന്നതിന് എത്ര വോൾട്ടേജ് വേണം?
 - (a) 0.7 V, (b) 0.3V (c) 0.1V (d) IV (1)
- 7. ഒരു CE കോൺഫിഗറേഷന്റെ ഇൻപുട്ട് കാര ക്ടറിസ്റ്റിക്കും ഒരു ഡയോഡിന്റെ ഫോർവേർഡ് VI കാരക്ടറിസ്റ്റിക്കും ഒരു പോലെ ആവാൻ കാരണമെന്ത്? (3)

- 8. In a transistor, the regions are different in size and have different doping level.a) Why collector region in made
 - largest in size? (2)
 - b) Which region is heavily doped?

(1)

- 9. The SCR is used as the controlling device for high power applications. Explain the operation of SCR with and without gate voltage (4)
- 10. The bridge rectifier is widely used in practical applications.
 - a) What is the advantage of bridge rectifier over centre tap rectifier?(1)
 - b) Construct a bridge rectifier using diodes and explain its working.(4)
- 11. You are given two rectifiers with ripple factors 1.21 and 0.48. Which one is the best rectifier? (1)
- 12. The most widely used biasing for amplifiers is the voltage divider biasing. Write two merits of it over other biasing techniques. (2)
- 13. An operational amplifier can be operated in two modes.
 - a) Draw the amplifier in inverting mode (2)
 - b) The phase difference between input and output wave form in inverting mode is degrees. (1)
- 14. The feedback circuit is usually used to vary the gain of an amplifier.
 - a) What happens to the gain when negative feedback is used? (1)
 - b) An oscillator uses.....type of feedback (1)

- ഒരു ട്രാൻസിസ്റ്ററിന്റെ ഭാഗങ്ങൾ വ്യത്യസ്ത വലിപ്പത്തിലും വ്യത്യസ്ത ഡോപ്പിംഗ് അളവി ലുമാണ്.
 - (a) എന്ത് കൊണ്ടാണ് കളക്ടർ ഭാഗം കൂടു തൽ വലിപ്പത്തിൽ ഉണ്ടാക്കുന്നത് (2)
 - (b) ഏതു ഭാഗമാണ് ഏറ്റവും കൂടിയ അളവിൽ ഡോപ്പ് ചെയ്യപ്പെടുന്നത്? (1)
- 9. ഹൈ പവർ ഉപയോഗങ്ങളിൽ SCR ഒരു കൺട്രോളിംഗ് ഉപകരണമായി പ്രവർത്തി ക്കുന്നു. ഗേറ്റ് വോൾട്ടേജ് കൊടുത്തും അല്ലാ തെയും ഉള്ള SCR ന്റെ പ്രവർത്തനം വിശദമാ ക്കുക. (4)
- പ്രായോഗിക ഉപയോഗങ്ങൾക്ക് ബ്രിഡ്ജ് റക്ടി ഫയറാണ് കൂടുതലായി ഉപയോഗിക്കുന്നത്.
 - (a) ബ്രിഡ്ജ് റക്ടിഫയറിന് സെന്റർ ടാപ്പ് റക്ടി ഫയറിനെ അപേക്ഷിച്ച് മേന്മ എന്ത്? (1)
 - (b) ബ്രിഡ്ജ് റക്ടിഫയർ വരച്ച് അതിന്റെ പ്രവർത്തനം വിശദമാക്കുക. (4)
- 11. നിങ്ങൾക്ക് തന്നിരിക്കുന്ന രണ്ട് റക്ടിഫയറുക ളുടെ റിപ്പിൾ ഫാക്ടർ 1.21 ഉം 0.48 ഉം ആണ്. ഇതിൽ ഏതാണ് നല്ല റക്ടിഫയർ? (1)
- 12. വോൾട്ടേജ് ഡിവൈഡർ ബയസിംഗ് ആണ് ആംപ്ലിഫയറുകളിൽ ഏറ്റവും കൂടുതലായി ഉപയോഗിക്കപ്പെടുന്ന ബയസിംഗ്. മറ്റു ബയാ സിംഗുകളെ അപേക്ഷിച്ച് ഇതിന്റെ രണ്ട് മേന്മ കളെഴുതുക. (2)
- 13. ഒരു ഓപ്പറേഷണൽ ആംപ്ലിഫയർ രണ്ടു തര ത്തിൽ പ്രവർത്തിപ്പിക്കാറുണ്ട്.
 - (a) ഇൻവേർട്ടിംഗ് ആംപ്ലിഫയറിന്റെ സർക്ക്യൂട്ട് വരക്കുക? (2)
 - (b) ഇവിടെ ഇൻപുട്ടും ഔട്ട്പുട്ടും തമ്മിലുള്ള ഫേസ് വൃത്യാസംഡിഗ്രി ആകുന്നു. (1)
- 14. ഒരു ആംപ്ലിഫയറിന്റെ ഗെയിൻ വ്യത്യാസപ്പെ ടുത്തുന്നതിനായി ഫീഡ്ബാക്ക് ഉപയോഗിക്കാ റുണ്ട്.
 - (a) നെഗറ്റീവ് ഫീഡ്ബാക്ക് ഉപയോഗിക്കു മ്പോൾ ഗെയിനിന് എന്തു സംഭവിക്കും? (1)
 - (b) ഒരു ഓസിലേറ്റർ തരത്തിലുള്ള ഫീഡ്ബാക്ക് ഉപയോഗിക്കുന്നു. (1)

- 15. In an oscillator, $\beta = 0.01$. To produce sustained oscillation, the gain of the amplifier must be (1)
- 16. An RC oscillator is used to generate low frequency sine wave.
 - (a) Draw the circuit of a RC phase shift oscillator. (2)
 - (b) What phase shift is caused by each RC section? (1)
- 17. The binary number system is used in digital systems.
 - a) Convert the decimal numbers 24 and 33 into binary (2)
 - b) Add these numbers using binary addition method. (2)
 - c) Convert the above result into decimal system (1)
- 18. Boolean algebra is used to simplify the logical expressions. Do the following simplification

 - b) $\overline{A.B} =$ (1)
- 19. The dot matrix is widely used in the display systems around us.
 - a) Write two places where you have seen dot matrix display (2)
 - b) How can we improve the resolution of a dot matrix display? (1)

- 15. ഒരു ഓസിലേറ്ററിൽ β വാല്യു 0.01 ആണ്. ശരിയായ വിധത്തിലുള്ള ഓസിലേഷൻസ് ഉണ്ടാക്കുന്നതിന് ആംപ്ലിഫയറിങ് എത്ര ഗെയിൻ വേണം? (1)
- 16. കുറഞ്ഞ ഫ്രീക്വൻസിയിലുള്ള സിഗ്നലുകളു ണ്ടാക്കുന്നതിനാണ് RC ഫേസ് ഷിഫ്ട് ഓസി ലേറ്റർ ഉപയോഗിക്കുന്നത്.
 - (a) ഒരു RC ഫേസ്ഷിഫ്ട് ഓസിലേറ്ററിന്റെ സർക്ക്യൂട്ട് ഡയഗ്രം വരക്കുക. (2)
 - (b) ഓരോ RC സെക്ഷനും ഉണ്ടാക്കുന്ന ഫേസ് ഷിഫ്റ്റ് എത്ര? (1)
- ഡിജിറ്റൽ സിസ്റ്റങ്ങളിൽ ബൈനറി നമ്പറുക ളാണ് ഉപയോഗിക്കുന്നത്.
 - (a) 24, 33 എന്നീ ഡെസിമൽ നമ്പറുകളെ ബൈനറി ഫോമിലേക്ക് മാറ്റുക. (2)
 - (b) ഈ നമ്പറുകളുടെ തുക ബൈനറി അഡീ ഷൻ രീതി ഉപയോഗിച്ച് കണ്ടെത്തുക. (2)
 - (c) മുകളിൽ ലഭിക്കുന്ന തുകയെ ഡെസിമൽ സിസ്റ്റത്തിലേക്ക് മാറ്റുക. (1)
- 18. ലോജിക്കൽ സമവാകൃങ്ങളെ ലഘൂകരിക്കുന്ന തിനായി ബൂളിയൻ ആൾജിബ്ര ഉപയോഗിക്കാ റുണ്ട്. താഴെക്കൊടുത്തിരിക്കുന്നവ ലഘൂകരി ക്കുക.

(a)
$$A + \overline{A} = \dots$$
 (1)

(b)
$$\overline{A.B} =$$
 (1)

- നമുക്ക് ചുറ്റുമുള്ള ഡിസ്പ്ലേകളിൽ ഡോട്ട് മെട്രിക്സ് സിസ്റ്റം ധാരാളമായി ഉപയോഗിക്കാ റുണ്ട്.
 - (a) ഡോട്ട് മെട്രിക്സ് ഡിസ്പ്ലേ ഉപയോഗി ക്കുന്ന രണ്ട് സ്ഥലങ്ങളെഴുതുക. (2)
 - (b) ഒരു ഡോട്ട്മെട്രിക്സ് ഡിസ്പ്ലേയുടെ റെസൊല്യൂഷൻ കൂട്ടുന്നത് എങ്ങനെ.

(1)

Answer Key

Qn. No.	Sub Qns	Value points	Score	Total
1	a)	$X_{C} = \frac{1}{2\pi fc}$	1	
	b)	Infinite	1	4
	c)	$X_{C} = \frac{1}{2\pi fc} = \frac{1}{2\overline{n} \times 100 \times 10^{3} \times 10\mu F} = \frac{1}{2\pi \times 100 \times 10^{3} \times 10 \times 10^{-6}}$	2	
2		5 %	1	1
3	a)	Ideal Voltage source has no internal resistance. But a practical source has finite internal resistance $\begin{array}{c} R \\ V \end{array} \Longrightarrow \begin{array}{c} V \\ \overline{R} \end{array} \end{array} \Longrightarrow \begin{array}{c} R \\ R \end{array}$	1 1	
	b)		2	4
4	a)	At resonance $X_L = X_{C'} wL = \frac{1}{wc}$	2	
	b)	$w = \frac{1}{\sqrt{LC}} f = \frac{1}{2\pi\sqrt{LC}}$ $Z = R + j \left(wL - \frac{1}{wc}\right)$	2	4
		At resource, $wL = \frac{1}{wc}$ so $Z = R$		
5	a)	1) Pentavalent - Phosphorous	1	2
	b)	2) Trivalent - Boron At room temparature, only a very few no. of free electrons are generated	2	2
6	a)	When a PN junction is formed, electrons from N side and holes from P - side move to the other side and become neutralised. When electrons are removed from the N- side positive ions will be formed and in the P side as these electrons combine with holes negative ions are formed. So the region near to the junction contains only ions and no charge carriers. Hence a charge deleted regions is created near to the junction	3	3

Qn. No.	Sub Qns	Value points	Score	Total
	b)	1) forward bias - depletion region decreases	1	2
		2) reverse bias - depletion region increases	1	
	c)	0.3V	1	1
7		The input side of the CE configuration is Emitter - Base junction which is a diode. Hence i/p characteristic is similiar to the characteristice of a diode	3	3
8	a)	The collector - base junction is operated in reverse bias and hence it has high resistance. When a current flow through it, large amount of heat is generated. In order to dissipate this heat, collector in made large in size.	2	3
	b)	Emitter	1	
9		Explain the operation of SCR with and without gate Voltage as given in the textbook	4	4
10	a)	It does not require a centre - tap transformer	1	1
	b)	Draw the bridge rectifier circuit and explain the operation	4	4
11		The rectifier with ripple factor 0.48	1	1
12		1) It makes the operation of amplifier independent of β	1	
		2) It eliminates thermal run away	1	2
13	a)	R_1 R_2 R_3 R_4	2	2
	b)	180^{0}	1	1
14	a)	The gain decreases	1	
	b)	Positive	1	2
15		$A = 100$, so that $A\beta = 1$	1	1
16	a)	Draw the circuit as given in the textbook	2	2
	b)	60° phase shift by each section	1	1
17	a)	$(24)_{10} = (11000)_2$	1	
		$(33)_{10} = (100001)_2$	1	2
	b)	= 011000 +		

Qn. No.	Sub Qns	Value points	Score	Total
		100001	2	2
		111001		
	c)	$(11100\overline{1})_2 = 1 \times 32 + 1 \times 16 + 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1$		
		= (57) ₁₀	1	1
18	a)	$A + \overline{A} = 1$	1	1
	b)	$\overline{A.B} = \overline{A} + \overline{B}$	1	1
19	a)	1) Display board in a Railway station	2	2
		2) In low floor KSRTC bus		
		3) Advertisment display board in towns or any other place. (2 score for any two points)		
19	b)	by increasing the number of dots in a given area	1	1

F.Y.	Reg. No:	 SET- 2
March 2015	Name:	

Part - III ELECTRONICS

Maximum: 60 Scores

Time: 2 h

Cool off time: 15 Minutes

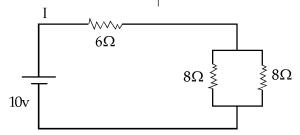
General Instructions to candidates:

- There is a 'Cool off time' of 15 minutes in addition to the writing time of 2 h.
- You are neither allowed to write your answers nor to discuss anything with others during the 'cool off time'.
- Use the 'cool off time' to get familiar with questions and to plan your answers.
- Read the questions carefully before answering
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary
- Electronics devices except nonprogrammable calculators are not allowed in the Examination Hall.

പൊതുനിർദ്ദേശങ്ങൾ

- നിർദ്ദിഷ്ട സമയത്തിന് പുറമെ 15 മിനിട്ട് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും. ഈ സമയത്ത് ചോദ്യങ്ങൾക്ക് ഉത്തരം എഴുതാനോ, മറ്റുള്ളവരുമായി ആശയം വിനിമയം നടത്താനോ പാടില്ല.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദ്യങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- എല്ലാ ചോദ്യങ്ങൾക്കും ഉത്തരം എഴുതണം.
- ഒരു ചോദ്യനമ്പർ ഉത്തരമെഴുതാൻ തെരെഞ്ഞെടുത്ത് കഴിഞ്ഞാൽ ഉപചോദ്യങ്ങളും അതേ ചോദ്യനമ്പ രിൽ നിന്ന് തന്നെ തെരെഞ്ഞെടുക്കേണ്ടതാണ്.
- കണക്ക് കൂട്ടലുകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽത്തന്നെ ഉണ്ടായിരിക്കണം.

(2)


- ചോദ്യങ്ങൾ മലയാളത്തിലും നൽകിയിട്ടുണ്ട്.
- ആവശ്യമുള്ള സ്ഥലത്ത് സമവാക്യങ്ങൾ കൊടുക്കണം
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴുകെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരീക്ഷാഹാളിൽ ഉപയോഗിക്കാൻ പാടില്ല.
- 1. We are using a number of active and passive components in electronic circuits. Select one active component from the following list.
 - (a) Resistor
- (b) Transistor
- (b) Capacitor
- (d) Inductor
- നമ്മൾ ഇലക്ട്രോണിക് സർക്ക്യൂട്ടിൽ വളരെ യധികം ആക്ടീവും പാസീവും ആയ കമ്പോ ണന്റ് സ് ഉപയോഗിക്കാറുണ്ട്. താഴെ കൊടുത്തി രിക്കുന്നവയിൽ നിന്നും ഒരു ആക്ടീവ് കമ്പോ ണന്റ് തിരഞ്ഞെടുക്കുക.
 - (a) റസിസ്റ്റർ
- (b) ട്രാൻസിസ്റ്റർ
- (b) കപ്പാസിറ്റർ
- (d) ഇൻഡക്ടർ
- (2)

- 2. The color coding is used to indicate the value of a resister.
 - (a) Suppose you want a resistance of $5.6 \,\mathrm{k}\,\Omega$ in your circuti. Find its color sequence. (2)
 - (b) You may find two resistances of equal value but in different size.Write the reason. (2)
- 3. When a current of 2A flows through a 10_{Ω} resistor, the voltage developed across the resistor is (1)
- 4. Find the value of current I in the following circuit. (2)

- ഒരു റസിസ്റ്റൻസിന്റെ വാല്യൂ സൂചിപ്പിക്കുവാൻ കളർ കോഡിംഗ് ഉപയോഗിക്കുന്നു.
 - (a) നിങ്ങൾ നിർമ്മിക്കുന്ന ഒരു സർക്യൂട്ടി ലേക്ക് $5.6k\Omega$ റസിസ്റ്റൻസ് ആവശ്യമുണ്ട് അതിന്റെ കളർ കോഡ് കണ്ടുപിടിക്കുക.

(2)

- (b) നിങ്ങൾ ഒരേ വാല്യൂ ഉള്ള റസിസ്റ്റുകൾ വൃതൃസ്ത വലിപ്പത്തിൽ കാണാറുണ്ട്. അതിന്റെ കാരണമെഴുതുക. (2)
- 3. ഒരു 10 $_\Omega$ റസിസ്റ്ററിലൂടെ 2A കറന്റ് ഒഴുകുമ്പോൾ ഉണ്ടാകുന്ന വോൾട്ടേജ് ആകുന്നു. (1)
- 4. താഴെക്കൊടുത്തിരിക്കുന്ന സർക്യൂട്ടിലെ കറന്റ് I കണ്ടുപിടിക്കുക. (2)

- 5. The Kirchhoff's voltage law is used to solve circuit with multiple loops. State KVL (2)
- 6. A sine wave is given by the equation $\upsilon = 3 \sin (2 \pi 100 \times t + 10^{\circ})$. Find the amplitude, frequency and phase angle
- 7. The solids can be classified into three types on the basis of forbidden energy gap. Explain with energy band diagram. (4)

- ട. ഒന്നിലധികം ലൂപ്പുകളുള്ള സർക്യൂട്ടുകൾ ലഘൂ കരിക്കുന്നതിന് കിർച്ചോഫ്സ് വോൾട്ടേജ് നിയമം ഉപയോഗിക്കുന്നു. ആ നിയമം പ്രസ്താ വിക്കുക. (2)
- 6. താഴെക്കൊടുത്തിരിക്കുന്ന സൈൻ വേവിന്റെ ആംപ്ലിറ്റ്യൂഡ്, ഫ്രീക്വൻസി, ഫേസ് ആംഗിൾ എന്നിവ കണ്ടുപിടിക്കുക. (3) $\upsilon=3\sin\left(2~\pi~100\times t~+10^{\circ}\right)$.
- ഫോർബിഡൻ എനർജി ഗൃാപ്പിന്റെ അടിസ്ഥാ നത്തിൽ ഖരവസ്തുക്കളെ മൂന്നായി തരം തിരി ക്കാം. എനർജി ബാന്റ് ഡയഗ്രത്തിന്റെ സഹാ യത്തോടെ വിശദീകരിക്കുക. (4)
- റിവേഴ്സ് ബയസ്ഡ് PN ജംഗ്ഷനിൽ ഒരു ചെറിയ കറന്റ് ഉണ്ടാവാറുണ്ട്. ഇതിനു കാരണം ആകുന്നു.

- 9. a. There are two types of break down in a reverse baised PN junction. Write the difference between them
 - b. Draw the VI characteristics of a zener diode and mark its break down voltage. (2)
- 11. The current gain in CB and CE configuration is denoted as α and β Derive the relationship between them (2)
- 12. A transistor is used to switich a LED ON and OFF. Explain the operation with the help of a circut. (3)
- 13. Match the following

- a.ഒരു റിവേഴ്സ് ബയസ്ഡ് PN ജംഗ്ഷനിൽ രണ്ടു തരത്തിലുള്ള ബ്രെയ്ക്ഡൗൺ സംഭ വിക്കാറുണ്ട്. അവ തമ്മിലുള്ള വൃത്യാസം എഴുതുക. (3)
 - b. ഒരു സെനർ ഡയോഡിന്റെ VI കാരക്ടറി സ്റ്റിക് വരച്ച് ബ്രെയ്ക്ഡൗൺ വോൾട്ടേജ് അട യാളപ്പെടുത്തുക.
- 11. CB, CE കോൺഫിഗറേഷനു കളിലെ കറന്റ് ഗെയിനിനെ സൂചിപ്പിക്കുവാൻ α യും β യും ഉപയോഗിക്കുന്നു. അവ തമ്മിലുള്ള ബന്ധം നിർമ്മിക്കുക. (2)
- 12. ഒരു ട്രാൻസിസ്റ്റർ ഉപയോഗിച്ച് LED യെ ഓണും ഓഫും ആക്കാൻ കഴിയുന്നു. ഒരു സർക്യൂട്ടിന്റെ സഹായത്തോടെ വിശദീകരിക്കുക. (3)
- 3. ചേരുഠപടി ചേർക്കുക (2)

Device	Application
1. FET	a. Temparature sensor
2. TRIAC	b. Voltage controlled oscillator
3. Varactor Diode	c. Amplifier
4. Thermistor	d. Power regulator

(2)

- 14. The LEDs are available in different colors. Write the principle behind this
 (2)
- 15. In a bridge rectifier, if one of the diode is damaged and not conducting, draw the output waveform (1)
- 16. The output of a rectifier can be made a good d.c voltage by using a capacitor filter at its output. The filtering will be best if we use (1)
 - a. 1 μ F
- b. 10 μ F
- c. 100 PF
- b. 1 PF

- 14. വ്യത്യസ്ത കളറുകളിൽ LED കൾ ഉണ്ടാക്കു ന്നതിന്റെ തത്വം എഴുതുക. (2)
- 15. ബ്രിഡ്ജ് റക്ടിഫയറിലെ ഏതെങ്കിലും ഒരു ഡയോഡ് കേടായി കറന്റ് കടത്തി വിടുന്നില്ലെ ങ്കിൽ ഉണ്ടാവുന്ന ഔട്ട് പുട്ട് വേവ്ഫോം വര ക്കുക. (1)
- ഒരു കപ്പാസിറ്റർ ഫിൽട്ടറിന്റെ സഹായത്തോടെ റക്ടിഫയറിന്റെ ഔട്ട്പുട്ട് നല്ല DC യാക്കി മാറ്റാൻ പറ്റും. താഴെ കൊടുത്തിരിക്കുന്നവയിൽ നിന്നും ഏത് കപ്പാസിറ്റർ ഉപയോഗിച്ചാൽ കൂടു തൽ ഫിൽട്ടറിംഗ് നടക്കും? (1)
 - a. 1 μF
- b. 10 μF
- c. 100 PF
- b. 1 PF

- 17. In practical rectifiers, the rectifier is followed by a capacitor filter. Draw the circuit diagram of a centre tap full wave rectifier with simple capacitor filter. Also draw the waveforms of rectifier output and filter output. (4)
- 19. The potential divider biasing is universally used for RC coupled amplifiers
 - a. what happens to the gain of the amplifier if the emitter bypass capacitor is removed? (2)
 - b. Draw the frequency response of the RC coupled amplifier indicating cutoff frequencies. (2)
- 20. The tank circuit is an important part of a LC oscillator.
 - a. How are oscillations generated in a tank circuit? (2)
 - b. The tank circuit selects the frequency of oscillation. How? (2)
- 21. An oscillator circuit will genarate oscillations if and only if the Bark Hausen criterion is satisfied. Write this criterion. (2)
- 22. Find the out put Y, of the following logic circut. (1)

- 17. പ്രായോഗിക റക്ടിഫയർ സർക്ക്യൂട്ടുകളിൽ കപ്പാസിറ്റർ ഫിൽട്ടർ ഉപയോഗിക്കാറുണ്ട്. ഒരു കപ്പാസിറ്റർ ഫിൽട്ടർ ഉപയോഗിച്ചുള്ള സെന്റർ ടാപ്പ് ഫുൾവേവ് റക്ടിഫയർ സർക്ക്യൂട്ട് വരക്കു ക. അതിൽ റക്ടിഫയറിന്റെയും ഫിൽട്ടറിന്റെയും ഔട്ട്പുട്ടുകൾ വരക്കുക. (4)
- 19. RC കപ്പിൾഡ് ആംപ്ലിഫയറിൽ പൊട്ടൻഷ്യൽ ഡിവൈഡർ ബയാസിങ്ങ് ആണ് ഏറ്റവും കൂടു തലായി ഉപയോഗിക്കുന്നത്.
 - a. അതിൽ എമിറ്റർ ബൈപാസ് കപ്പാസിറ്റർ ഒഴുവാക്കിയാൽ ആംപിഫയറിന്റെ ഗെയി നിന് എന്ത് സംഭവിക്കും?
 - b. ഒരു RC കപ്പിൾഡ് ആ പ്ലി ഫയ റിന്റെ ഫ്രീക്വൻസി റെസ്പോൺസ് വരച്ച് കട്ട് ഓഫ് ഫ്രീക്വൻസികൾ രേഖപ്പെടുത്തുക. (2)
- 20. ഒരു LC ഓസിലേറ്ററിന്റെ പ്രധാനപ്പെട്ട ഭാഗമാണ് ടാങ്ക് സർക്യൂട്ട്.
 - a. ഒരു ടാങ്ക് സർക്യൂട്ടിൽ ഓസിലേഷൻസ് ഉണ്ടാകുന്നത് എങ്ങനെ? (2)
 - aay ഓസിലേറ്ററിന്റെ ഫ്രീക്വൻസി തീരുമാ നിക്കുന്നത് ടാങ്ക് സർക്യൂട്ട് ആണ്. എങ്ങനെ?
- 21. ബാർക്ക് ഹ്യൂസൻ ക്രൈറ്റീരിയൻ പാലിക്കപ്പെ ടുന്നുണ്ടെങ്കിൽ മാത്രമേ ഒരു ഓസിലേറ്ററിൽ ഓസിലേഷൻസ് ഉണ്ടാവുകയുള്ളൂ. ഈ ക്രൈറ്റീ രിയൻ എഴുതുക. (2)
- 22. താഴെ കൊടുത്തിരിക്കുന്ന ലോജിക് സർക്യൂ ട്ടിന്റെ ഔട്ട്പുട്ട് Y കണ്ടുപിടിക്കുക. $\hspace{1cm}$ (1)

23. a. Realize the following logical expression using gates

$$Y = AB + A\overline{B} + ABC$$
 (2)

- b. Simplify the above logic using Boolean Algebra (2)
- 24. Draw the circuit diagram of a single bit adder with carry using gates. (2)
- 25. A galvanometer can be converted into a voltmeter. For this.
 - a. a small resistance is connected in parallel
 - b. a high resistance is cannected in parallel.
 - c. a small resistance is connected in series
 - d. a high resistance is connected in series. (1)
- 26. A CRO is a versatile instrument for measurement. How the frequency of a sine wave is measured using CRO (2)

 താഴെ കൊടുത്തിരിക്കുന്ന ലോജിക്, ഗേറ്റുകൾ ഉപയോഗിച്ച് നിർമ്മിക്കുക.

a.
$$Y = AB + A\overline{B} + ABC$$
 (2)

- b. ബൂളിൻ ആൾജിബ്ര ഉപയോഗിച്ച് മുകളിൽ നൽകിയിരിക്കുന്ന ലോജിക്, ഗേറ്റുകൾ ഉപ യോഗിച്ച് ലഘൂകരിക്കുക (2)
- 24. ഓരോ ബിറ്റും ക്യാരിയും കൂടി ചേർത്ത് ആഡ് ചെയ്യാൻ കഴിയുന്ന ഒരു ആഡർ സർക്യൂട്ട്, ഗേയി റ്റുകൾ ഉപയോഗിച്ച് വരക്കുക. (2)
- 25. ഒരു ഗാൽവനോമീറ്ററിനെ വോൾട്ട് മീറ്റർ ആക്കി മാറ്റുന്നതിനായി
 - a. ഒരു ചെറിയ റെസിസ്റ്റൻസ് പാരലൽ ആയി കണക്ട് ചെയ്യുക.
 - ഒരു വലിയ റെസിസ്റ്റൻസ് പാരലൽ ആയി കണക്ട് ചെയ്യുക.
 - ഒരു ചെറിയ റെസിസ്റ്റൻസ് സീരീസ് ആയി കണക്ട് ചെയ്യുക.
 - d. ഒരു വലിയ റെസിസ്റ്റൻസ് സീരീസ് ആയി കണക്ട് ചെയ്യുക.
- 26. CRO ഉപയോഗിച്ച് ഒരു സൈൻ വേവിന്റെ ഫ്രീകൻസി അളക്കുന്നത് എങ്ങനെയെന്ന് വിശ ദമാക്കുക. (2)

Answer Key

Qn. No.	Sub Qns	Value points	Score	Total
1		Transistor	1	1
2	a	Green, Blue, Red	2	
2	b	1. Big size resistor is larger in wattage rating 2. Small size one is smaller in wattage rating	1 1	4
3		$V = IR, 2 \times 10 = 20V$	1	1
4		1. $R_T = 6 + 8 \square 8 = 6 + 4 = 10\Omega$	1	
		2. $I = \frac{V}{R_T} = \frac{10}{10} = 1A$	1	2
5		The algebraic sum of voltage around any closed loop is zero	2	2
6		General equation = $V \sin (\omega t + \phi)$ 1. Amptitude, $V = 3V$	1	3
		2. Frequency = $\frac{\omega}{2\pi}$ = 100 HZ	1	
		3. Phase angle, $\phi = 10^\circ$	1	
7		Insulator Semiconductor Conductor	1 for each diagram 1 for explanation	4
8		Minority charge carries	1	1
9	a	Avalanche Zener		
		1. occurs for lightly doped occurs for heavily doped junction	1	
		2. electric field is weak very strong electric field	1	3
		3. break down occurs above break down occurs below 6V	1	
9	b	Give mark to additional value points break down voltage x	2	2

Qn. No.	Sub Qns	Value points	Score	Total
10	~	Collector	1	1
11		$\alpha = \frac{I_C}{I_E}$ but $I_E = I_B + I_C$ $\beta = \frac{\alpha}{1 - \alpha}$		
		So $\alpha = \frac{I_C}{I_C + I_B}$, Divide by I_C	2	2
		$\alpha = \frac{\frac{I_C}{I_C}}{\frac{I_C}{I_C} + \frac{I_B}{I_C}} = \frac{1}{1 + \frac{1}{\beta}} = \frac{\beta}{1 + \beta}$		
12		1.		
		2	1	
		2. When V _I = 0, transistor is OFF and LED is OFF	1	3
13		3. When $V_I = 5V$, transistor is ON and LED is ON FET - Amplifier	1	
13		TRIAC - Power regulator Varactor - Voltage controlled oscillator Thermistor - Temparature scanner	½ score for each	2
14		Different materials are used to make LED of different color. When material varies the bandgap energy varies. The frequency generated, $\gamma = \frac{Eg}{h}$ varies for different Eg hence we get different color.	2	2
15		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1
16		10 μF	1	1
17			2	

Qn. No.	Sub Qns	Value points	Score	Total
		2) Realifier O/p	1	4
		3) Filter opp	1	
18		Total gain in $db = 30 db + 40 db = 70 db$	1	1
19	a	When C_E is removed a part of the o/p ac voltage drops accrose R_E and o/p is reduces	2	
19	b			
		A max		
		0.707 A max = -		
		fi fn f	2	4
20	a	1. Draw tank circuit	1	2
		2. Necessary explanation	1	
20	b	1. $f = \frac{1}{2\pi\sqrt{LC}}$ Explain the generation of oscillation as		
		given in text. 2. LC circuit is a reasonant and it will select its resonant frequency for oscillation	1	2
21		1. $A \beta = 1$	1	2
		2. $\angle A\beta = 0^{\circ} \text{ or } 360^{\circ}$	1	_
22		y=0 % score for c/p at each gate	1 }	1
23		a) AB	2	
		AB = AB + ABC = A(B+B) + ABC = A+ABC = A(I+BC) = A	2	4

Qn. No.	Sub Qns	Value points	Score	Total
24	χ.ii.ο	A B Cin Cow		
			2	2
25		a high resistance is connected in series	1	1
26		Display the signal on CRO. Calculate the time period as the product of no. of division on X - axis for one cycle and the value of Time / Div. Then Frequency = $\frac{1}{Timeperiod}$	2	2