Significant Learning Outcomes

EEX

After the completion of this chapter, the
learner

identifies the need of user-defined
data types and uses structures to
represent grouped data.

creates structure data types and
accesses elements to refer to the
data items.

uses nested structures to represent
data consisting of elementary data
items and grouped data items.
develops C++ programs using
structure data types for solving real
life problems.

explains the concept of pointer and
uses pointer with the operators &
and *.

compares the two types of memory
allocations and uses dynamic
operators new and delete.
illustrates the operations on
pointers and predicts the outputs.

establishes the relationship

between pointer and array.

uses pointers to handle strings.
explains the concept of self
referential structures.

Structures and Pointers

started writing C++ programs in
Class XI for solving problems.
Almost all problems are related to
the processing of different types of data. Last
year we came across only elementary data items
such as mtegers, fractional numbers, characters
and strings. We used vartables to refer to these
data and the variables are declared using basic
data types of C++. We know that all data 1s
not of fundamental (basic) types; rather many
of them may be composed of elementary data
items. No programming language can provide
data types for all kinds of data. So
programming languages provide facility to
define new data types, as desired by the users.
In this chapter, we will discuss such a user-
defined data type named structure. This
chapter also discusses a new kind of variable
known as pomter. The concept of pointersisa
typical feature of languages like C, C++. It
helps to access memory locations by specitying
the memory addresses directly, which makes
execution faster. A good understanding of this
concept will help us to design data structure
applications and system level programs.

Last year you might have used GNU Compiler
Collection (GCC) with Geany IDE or Turbo
C++ IDE for developing C++ programs.

Computer Science - XII

GCC differs from Turbo C++ IDE in the structure of source code, the way of
mcludig header files, the size of mt and short, etc. In this chapter the concepts are
presented based on GCC.

1.1 Structures

Now-a-days students, employees, professionals, etc. wear identity cards 1ssued by
mstitutions or organisations. Figure 1.1 shows the identity card of a student. The
first column of Table 1.1 contains some of the data printed on the card. You try to
fill up the second column with the appropriate C++ data types discussed m Class XI.

Data C++

data type
Govt.HSS Thykkunnam,Kottayam
12345

StudentID: 12345 Sneha S. Ra]
Student Name: Sneha S.Raj 20/02/1997
Date of Birth: 20-02-1997
Blood group: O+ve O+ve
Address: Sneha Nilayam Snehanﬂayam
Gandhi Nagar) ?
Chemmanavattom Gandhi Nagar,
Pin: 685 531
n Chemmanavattom,
Fig.1.1: ID card of a student Pin 685 531

Table 1.1: Data and C++ data types

You may use short or int for admission number (12345), char array for name
(Sneha S. Raj), blood group (O +ve) and even address. Sometimes you may not be
able to identify the most appropriate data types for date of birth and address. Let
us consider the data 20/02/1997 and analyse the composition of this data. It is
composed of three data items namely day number (10), month number (02) and
year (1997). In some cases, the name of the month may be used mstead of month
number. Address can also be viewed as a composition of data items such as house
number/name, place, district, state and PIN code. Even the entire details on the
identity card can be considered as a single unit of data. Such data 1s known as
grouped data (or aggregate data or compound data). C++ provides facility to
defme new data types by which such aggregate or grouped data can be represented.
The data types defined by user to represent data of aggregate nature are generally
known as user-defined data types.

Structure is a user-defined data type of C++ to representa collection of logically
related data items, which may be of different types, under a common name. We
learnt array m Class XI, to refer to a collection of data of the same type. But structure

........... %

1. Structures and Pointers

can represent a group of different types of data under a common name. Let us
discuss how a structure 1s defmed in C++ and elements are referenced.

1.1.1 Structure definition

While solving problems, the data to be processed may be of grouped type as
mentioned above. We have to define a suttable structure to represent such grouped
data. For that, first we have to identify the elementary data items that constitute the
grouped data. Then we have to adopt the following syntax to define the structure.

struct structure tag

{
data type variablel;
data type variable2;

data type variableN;
}i

In the above syntax, struct 1s the keyword to define a structure, structure tag
(or structure name) 1s an identifier and variablel, variable?2, ...,
variableN are identifiers to represent the data items constituting the grouped
data. The identifier used as the structure tag or structure name is the new user-
defmed data type. It has a size like any other data types and 1t can be used to declare
variables. This data type can also be used to specify the arguments of functions and
as the return type of functions. The variables specified within the pair of braces are
known as elements of the structure. The data types preceded by these elements
may be basic data types or user-defined data types. These data types determine the
size of the structure.

Now let us define a structure to represent dates of the format 20/02/1997 (as seen
mn the ID card). We can see that this format of date 1s constituted by three mtegers
which can be represented by int data type of C++. The following is the structure
definition for this format of date:

struct date

{
int dd;
int mm;

int vyy;

}i

Computer Science - XII

Here, date 1s the structure tag (structure name), and dd, mmand yy are the elements
of the structure date, all of them are of int type. If we want to specify the month
as a string (like January mstead of 1), the definition can be modified as:

struct strdate

{
int day;
char month[10]; // name of month is a string
int year;

}i

While writing programs for solving problems, some of the data mvolved may be
logically related in one way or the other. In such cases, the concept of structure data
type can be utilised effectively to combine the data under a common name to
represent data compactly. For example, the student details such as admission number,
name, group, fee, etc. are logically related and hence a structure can be defmed as
follows:

struct student

{
int adm no;
char name[20];
char group[l0];
float fee;

Now, try to define separate structures yourself to represent address
and blood group. Blood group consists of group name and rh value.

We know that the details of an employee may consist of employee
code, name, gender, designation and salary. Defme a suitable structure
to represent these details.

Let us do

We have discussed the way of defiing a structure type data. Can we now store data
m 1t No, 1t 1s stmply a data type definition. Using this data type we should declare
a variable to store data.

1.1.2 Variable declaration and memory allocation

Asm the case of basic data items, a vartable 1s required to refer to a group of data.
Once we have defined a structure data type, variable 1s declared using the following

syntax:
struct structure tag varl, varzZ, ..., varN;
OR
structure tag varl, varZ2, ..., varN;

........... %p_

1. Structures and Pointers

In the syntax, structure tag1s the name of the structure and vari, var2, ...,
varN are the structure variables. Let us declare variables to store some dates using
the structure date and fulldate.

date dob, today; OR struct date dob, today;
strdate adm date, join date;

We know that variable declaration statement causes memory allocation as per the
size of the data type. What will be the size of a structure data type? Smce 1t 1s user-
defined, the size depends upon the definition of the structure. The definition of
date shows that its vartables require 12 bytes each because it contams three int
type elements (size of int in GCC 1s 4 bytes). The memory allocation for the
variable join date of strdate type i1s shown in Figure 1.2.
join date

day month[10] year

l«——4 Bytes B 10 Bytes > < 4 Bytes ——|

Fig. 1.2: Memory allocation for a structure variable

The size of int type in GCCis 4 bytes and in Turbo IDE, it is 2 bytes. In
Figure 1.2, the elements day and year are provided with 4 bytes of memory
since we follow GCC. Since this much memory is not required for storing
values in these elements, it is better to replace int with short.

The variable join date consists of three elements day, month and year. These
elements require 4 bytes, 10 bytes and 4 bytes, respectively and hence the memory
space for join_date 1s 18 bytes.

Now you find the size of the structure student defed earler.

Also write the C++ statement to declare a variable to refer to the
details of a student and draw the layout of memory allocated to this
Let us do Variable.

A structure vartable can be declared along with the definition also, as shown below:

struct complex
{
short real;
short imaginary;
}cl, c2;

This structure, named complex can represent complex numbers. The identifiers
cl and c2 are two structure variables, each of which can be used to refer to a

11 [

Computer Science - XII

complex number. If we declare structure variables along with the definition, structure
tag (or structure name) can be avoided. The following statement declares structure
variables along with the defmnition.

struct
{

int a, b, c;
tegn 1, egn 2;

There 1s a limitation i this type of definition cum declaration. If we want to declare
vartables, to define functions, or to specify arguments using this structure later mn
the program, it 1s not possible since there is no tag to refer. The above structure
also shows that if the elements (or members) of the structure are of the same type,
they can be specified m a single statement.

Variable initialisation

During the declaration of variables, they can be assigned with some values. This is
true 1 the case of structure variables also. When we declare a structure variable, 1t
can be mitialised as follows:

structure tag variable={valuel, value2,..., valueN};

For example, the details of a student can be stored 1n a vartable durmg its declaration
itself as shown below:

student s={3452, "Vaishakh", "Science", 270.00};

The values will be assigned to the elements of structure variable s in the order of
their position m the defmition. So, care should be given to the order of appearance
of the values. The above statement allocates 38 bytes of memory space for variable
s, and assigns the values 3452, "Vaishakh", "Science" and 270.00 to the elements
adm_no, name, group and fee of s, respectively.

If we do not provide values for all the elements, the given values will be assigned to
the elements on First Come First Served (FCES) basts. The remaming elements will
be assigned with 0 (zero) or '\0' (null character) depending on numeric or string,

A structure vartable can be assigned with the values of another structure variable.
But both of them should be of the same structure type. The following is a valid
assignment:

student st = s;
This statement initialises the variable st with the values available in s. Figure 1.3
shows this assignment:

%}_

1. Structures and Pointers

S

adm no |name group fee
3452 Vaishakh Science 270.00
st

adm no| |name group fee
3452 Vaishakh Science 270.00 "

Fig. 1.3: Structure assignment

While defining a structure, the elements specified in it cannot be
assigned with initial values. Though the elements are specified using
, = the syntax of variable declaration, memory is not allocated for the

S structure definition statement. Hence, values cannot be assigned to them.
The structure definition can be considered as the blue print of a house. It shows the
number of rooms, each with a specific name and size. But nothing can be stored in
these rooms. The total space of the building will be the sum of the spaces of all rooms
in the house. Any number of houses can be constructed based on this plan. All of them
will be the same in terms of humber of rooms and space, but each house will be given
different name. Structure definition is the blue print and structure variables are the
realisation of the blue print (similar to the construction of houses based on the blue
print). Each variable can store data in its elements (similar to the placing of furniture,
house-hold items and residents in rooms).

1.1.3 Accessing elements of structure

We know that array 1s a collection of elements and these elements are accessed
using the subscripts. Structure 1s also a collection of elements and C++ allows the
accessibility to the elements individually. The period symbol (.) 1s provided as the
operator for this purpose and it is named dot operator. The dot operator (.)
connects a structure variable and 1ts element using the following syntax:

structure variable.element name
In programs, the operations on the structure data can be expressed only by referring
the elements of the structure. The following are some examples for accessing the
elements:

today.dd = 10;

strcpy (adm date.month, "June");

cin >> sl.adm noj;

cout << cl.real + c2.real;

But the expression c1+c2 1s not possible, since the operator + can be used with
numeric data types only.

Computer Science - XII

Let us discuss an mteresting fact about assignment operation on structure vartables.
Two structures are defined as follows:

struct test 1 struct test 2
{ {
int a; int a;
float b; float b;
}t1={3, 2.5}; 1t2;

The elements of both the structures are the same in number, name and type. The
structure variable t1 of type test 1 1s mitialised with 3 and 2.5 for 1ts a and b.
But the assignment statement: t2=t1; 1smvahd, because t1 and t2 are of different
types,1e, test landtest 2, respectively. Butif we want to copy the values of
t11nto t2, the followmg method can be adopted:

t2.a = tl.a; t2.b = tl.b;

It 1s possible because we are assigning an int type data mto another int type
variable.

Now let us write a program to implement the concepts discussed so far. We define
a structure student to represent register number, name and scores awarded 1n
continuous evaluation (CE), practical evaluation (PE) and term-end evaluation (1'E).

The details are mput and the total score as part of Continuous and Comprehensive
Evaluation (CCE) 1s displayed.

Program 1.1: To find the total score of a student

#include <iostream>

#include <cstdio> //To use gets () function

using namespace std;

struct student //structure definition begins

{
int reg no; //Register number may exceed 32767, so int
char name[20];
short ce;//int takes 4 bytes, but ce score is a small number
short pe;
short te;

}; //end of structure definition

int main()

{

student s; //structure variable
int tot score;
cout<<"Enter register number: ";

cin>>s.reg noj;

1. Structures and Pointers

fflush(stdin) ; //To clear the keyboard buffer
cout<<"Enter name: ";

gets (s.name) ;

cout<<"Enter scores in CE, PE and TE: ";
cin>>s.ce>>s.pe>>s.te;

tot score=s.ce+s.pets.te;

cout<<"\nRegister Number: "<<s.reg no;
cout<<"\nName of Student: "<<s.name;

cout<<"\nCE Score: "<<s.ce<<"\tPE Score: "<<s.pe
<<"\tTE Score: "<<s.te;

cout<<"\nTotal Score : "<<tot score;

return O;

}
A sample output window of Program 1.1 1s given below:

Output window:

Enter register number: 23545
Enter name: Deepika Vijay
Enter scores in CE, PE and TE: 19 38 54

Register Number: 23545

Name of Student: Deepika Vijay

CE Score: 19 PE Score: 38 TE Score: 54
Total Score ¢ 111

In Program 1.1, the structure 1s defined outsidemain () function. It may be defined
mnside main () also. The position of the definition determines the scope and life of
the structure. Recollect the concept of local and global scope of variables and
functions that we discussed m Chapter 10 of Class XI. If the definition 1s mside the
main (), the structure can be used to declare variables within themain () function
only. On the other hand, 1f the definition has a global scope, it allows declaration of
structure variables i any function 1n the program.

Program 1.1 uses £f1ush () function before the gets () function. It is
required in programs where an input of string facilitated by gets ()
function is followed by any other input. When we press <Enter> key as
the delimiter for the former input, the *\n’ character corresponding to
the <Enter> key available in the keyboard buffer will be taken as the input for the
string variable. This character will be considered as the delimiter for the string variable
and the program control goes to the next statement in the program. Ineffect, we will
not be able to input the actual string. So, we used ££1ush () function before inputting

the name.
—

...........

Computer Science - XII

In Program 1.1, only one structure variable 1s used and hence the data of only one
student can be referenced by the program at a time. If we have to deal with the
details of a group of students, we will use an array of structures. So, let us write a
program to 1illustrate the concept of array of structures. Program 1.2 accepts the
details of a group of salesmen, each of which includes salesman code, name and
amount of sales in 12 months. The program displays the entered details along with
the average sales of all the salesmen. We can also see an array of floating pomt
numbers as one of the elements of the structure.

Program 1.2: To find the average sales by salesmen

#include <iostream>
#include <cstdio>
#include <iomanip> //To use setw() function
using namespace std;
struct sales data
{
int code;
char name[1l5];
float amt[12]; //To store the amount of sales in 12 months
float avg;
i
int main()
{
sales data s[20]; //array of structure
short n,i,j; //short is to minimise the amount of memory
float sum;
cout<<"Enter the number of salesmen: ";
cin>>n;
for (1=0; i<n; i++)
{
cout<<"Enter details of Salesman "<<i+1;
cout<<"\nSalesman Code: ";
cin>>s[1].code;
fflush(stdin);
cout<<"Name: ";
gets(s[i] .name) ;
cout<<"Amount of sales in 12 months: ";
for (sum=0, 3=0; j<12; Jj++)
{

cin>>s[i].amt[]];
sum=sum+s [i] .amt[]];

1. Structures and Pointers

s[i].avg=sum/12;
}
cout<<"\t\tDetails of Sales\n";
cout<<"Code\t\tName\t\tAverage Sales\n";
for(i=0;1i<n;i++)
{
cout<<setw (4)<<s[i].code<<sgsetw(1l5)<<s[i] .name;
for (3=0;73<12;j++)
cout<<setw (4)<<s[i].amt[]];
cout<<s[i].avg<<'\n';
}

return O;

}

You may try out this program in the lab and see the output. In program 1.2, we
used a floating pomt array as one of the elements of the structure. It uses array of
structures for handling the details of different salesmen. Note that the variables n,
i and Jj are declared using short. It allocates only 2 bytes for each of these
vartables. If int would have been used, 4 bytes would be used.

1.1.4 Nested structure

An element of a structure may 1tself be another structure. Such a structure 1s known
as nested structure. The concept of nesting enables the building of powerful data
structures. If we want to imnclude date of admission as an element in the structure
student, any of the definitions given in Table 1.2 can cater to the need.

Definition A Definition B
struct date struct student
{ {
short day; int adm no;
short month; char name[20];
short year; struct date
bi {
struct student short day;
{ short month;
int adm no; short year;
char name[20]; } dt adm;
date dt adm; float fee;
float fee; } 8

¥,

Table 1.2: Two styles of nesting

Computer Science - XII

Defimition A of Table 1.2 contains the two structures defined separately. The second
structure, student, contams structure variable dt_admof date type as an element.
Here we have to make sure that the mner structure 1s defined before makmng it
nested. But i definition B we can see that structure date 1s defined mside the
structure student. If this style1s followed, the scope of date 1s only within student
structure and hence a variable of type date cannot be declared outside student.
Since the varable declaration of the mner structure 1s essential, 1ts tag may be avoided
in the definition. The following statements illustrate how a nested structure variable
1s initialised and the elements are accessed:

student s = {4325, "vishal", {10, 11, 1997}, 575};
cout<<s.adm no<<s.name;

cout<<s.dt adm.day<<"/"<<s.dt adm.month<<"/"<<s.dt adm.year;

Defme a structure employee with the details employee code, name,
date of joming, designation and basic pay.

Draw the layout of memory location allocated to a variable of
Letus do employee typeand find its size.

Note that the format for accessing the inner structure element 1s:

outer_structure_varaiable.inner_structure_variable.element
Array Vs Structure

We discussed arrays and structures as data types to refer to a collection of data
under a common name. But they differ in some aspects. Table 1.3 shows a compatison
between these two data types.

Arrays Structures

¢ It1s a dertved data type. e Itisauser-defined data type
e A collection of same type of data. ¢ A collection of different types of data.

* Elements of an array are referenced ¢ Elements of structure are referenced

using the corresponding subscripts. using dot operator (.)

* When an element of an array * When an element of a structure
becomes another array, multi- becomes another structure, nested
dimensional array 1s formed. structure 1s formed.

* Array of structures 1s possible. ¢ Structure can contain arrays as

elements

Table 1.3: Comparison between arrays and structures

1. Structures and Pointers

Know your progress

1. What 1s structure?

2. Structure combines different types of data undera single unit. State
whether this 1s true or false.

3. Which of the following 1s true for accessing an element of a
structure?

4. struct.element

b.structure_tag.element

C.structure_variable.element

d.structure_tag.structure_variable
4. What 1s nested structure? Write an example.

5. As subscript 1s for array, 1s associated with structure.

1.2 Pointers

Suppose we have to prepare an assignment paper on 'Advances in Computing'. We
may need suttable books for collecting the material. Obviously we may search for
the books 1n the library. We may not be able to locate the book in the library. The
librarian or our Computer Science teacher can help us to access the book. Let us
think of the role of the librarian or the teacher. He/she is always a reference. He/
she can provide us with the actual data (book) that 1s stored somewhere m the
library. Figure 1.4 illustrates this example.

!' Pointer 1s something like the librartan or
teacher m the above example. It 1s a kind
of reference. Consider the followmg C++
statement:

] int num=25;
‘ihﬂ‘iyj il [F We know that it is a variable initialisation
K s 2 e Ao X Ul statetnent, 1n which num 1s a variable that .is
) \ il = assigned with the value 25. Naturally, this

R 2

statement causes memory allocation as

Fig. 1.4: Example for referenc shown 1n Figure 1.5.

In the figure, we can see that a variable has three
attributes - 1ts name, address and data type. Here,
the name of the variable 1s num and the content 25 ‘ |
shows the data type. What about the address? Is 1t 1001 ‘ 1002 I 1003| 1004
1001, 1002, 1003 or 1004? It 1s 1001. Variable num Fig.1.5: Memory allocation

num 2:5

...........

Computer Science - XII

bemng int type, 4 bytes (in GCC) are allocated. We know that each cell n RAM 1s
of one byte size and each cell 1s identified by its unique address. But, when more
than one cell constitute a smgle storage location (known as wezzory word), the address
of the first cell will be the address of that storage location. That is how 1001 becomes
the address of num. In class XI, we learnt that a variable 1s associated with two
values: L-value and R-value, where L-value is the address of the variable and R-
valne s its content. Figure 1.5 shows that I-value of numis 1001 and R-value is 25.

Suppose we want to store the L-value (address) of a vartable m another memory
location. A variable is needed for this and it 1s known as pointer variable. Thus we
can define pointer as a variable that can hold the address of a memory location.
Pomter 1s primitive since it contams memory address which 1s atomic m nature. So
we will say that pomter 1s a variable that points to a memory location (or data).

Harold Lawson (born 1937), a software engineer, computer architect
and systems engineer is credited with the 1964 invention of the pointer.
In 2000, Lawson was presented the Computer Pioneer Award by the
IEEE for his invention.

As you know, computers use their memory for . address
storing the instructions of a program, as well as 0

the values of the variables that are associated
with it. The memory is a sequential collection of
‘storage cells' as shown in Figure 1.6. Each cell, commonly known
as a byte, has a number called address associated with it.
Typically, the addresses are numbered consecutively, starting
from O (zero). The address of the last cell depends on the
memory size. A computer memory having 64 K (64 x 1024 =
65536 Bytes) memory will have its last address as 65,535.

Whenever we declare a variable in a program, a location is 65535
allocated somewhere in the memory to hold the R-value of the Fig.1.6: AMemory
variable. Since every byte has a unique number as its address, organisation

this location willhave its own address. Nowadays, the size of

RAM is in terms of GBs and the address of memory location is expressed in hexadecimal
number. It is because hexadecimal system can express larger values with lesser number
of digits compared to decimal system.

- o

1
2
3
4

........... %

1. Structures and Pointers

1.2.1 Declaration of pointer variable

Pointer 1s a dertved data type and hence a variable of poimter type 1s to be declared
prior to its use in the program. The following syntax 1s used to declare pointer
variable:

data type * variable;

The data_ type can be fundamental or user-defined and variable is an identifier.
Note that an asterisk (¥) 1s used in between the data type and the variable. The
following are examples of pomter declaration:

int *ptrl;

float *ptrz;

struct student *ptr3;

As usual memory will be allocated for these pointers. Do you think that the amount
of memory for these variables 1s dependent on the data types used? We know that
memory addresses are unsigned mteger numbers. But it does not mean that pointers
are always declared using unsigned int. Then, what s the criterion for determining
the data type for a pomter? The data type of a pomter should be the same as that of
the data pointed to by it. In the above examples, ptr1 can contain the address of
an mteger location, ptr2 can pomt to a location contaming floating point number,
and ptr3 can hold the address of location whose R-value 1s student type data.
So what will be the size of a pointer variable? The memory space for a pointer
depends upon the addressing scheme of the computer. Usually, the size of a pomter
m C++ 15 2 to 4 bytes. As far as a programmer 1s concerned, there 1s no need to
bother about the size of pomter while solving problems.

1.2.2 The operators & and *

Once a pomter 1s declared, memory address of a location of the same data type
can be stored m it. When a varmable 1s referenced m a C++ statement, actually 1ts
R-value 1s referred to. How can we retrieve 1ts address (L-value)? C++ provides an
operator named address of operator (&), to get the address of a variable. If num
1s an integer variable, its address can be stored 1n pointer ptr1 by the following
statement:

ptrl = #
ptrl 1001 \

The statement, on execution, establishes
a link between two memory locations 1500
as shown m Figure 1.7. num 25

We have discussed that pomter 1s a kind 1001
of reference. Smce a pointer references

Fig.1.7: Pointer and a location pointed to by it

21

——

Computer Science - XII

a data stored somewhere i the memory, by dereferencing the pomter we get the
data. C++ provides this dereferencing facility by an operator named indirection
or dereference operator (*). The following statement retrieves the value pointed
to by the pomter ptr1 and displays on the screen.

cout << *ptril;

It 1s clear that this statement 1s equivalent to the statement: cout << num;

Since the operator * retrieves the value at the location pomted to by the pomter,
the * operator is also known as value at operator.

Note that the operators address of (&) and indirection (*) are unary operators. The
& operator can be used with any kind of variable since every variable 1s associated
with a memory address. But, the * operator can be used only with pointers.

Considering the variables used m Figure 1.7, the following statements illustrate the
operations performed by these operators:
cout<< # // 1001 (address of num) will be the output
cout<< ptrl; // 1001 (content of ptrl) will be the output
cout<< num; // 25 (content of num) will be the output
cout<< *ptrl;/* 25 (value in the location pointed to by
ptrl) will be the output */
cout<< &ptrl;// 1500 (address of ptrl) will be the output
cout<< *num; // Error!! num is not a pointer
Thelast statement 1s invalid. An error will be reported during compilation, because
num is not a pointer and the content 25 is not a memory address. The indirection
operator (*) should be used only with pomters.

1.3 Methods of memory allocation

We know that variable declaration statements imnitiate memory allocation. The
required memory is allocated when the program is loaded in RAM. The execution
of the program begins only after this memory allocation. The amount of memory
allocated depends upon the number and data type of variables used i the program.
This amount 1s static, 1.e., it will not increase or decrease during the program run.
The memory allocation that takes place before the execution of the program is
known as static memory allocation. It is due to the variable declaration statements
in the program. There is another kind of memory allocation, called dynamic
memory allocation. In this case, memory is allocated during the execution of the
program. It 1s facilitated by an operator, named new. As complementary to this
operator, C++ provides another operator, named delete to de-allocate the
memory.

........... %

1. Structures and Pointers

1.3.1 Dynamic operators - new and delete

The operator new is a keyword m C++ and it triggers the allocation of memory
during run-time (execution). It 1s a unary operator and the required operand 1s
etther a fundamental or user-defined data type. Dynamic memory allocation being
an operation, the operator new and the operand data type constitute an expression.
Naturally it returns a value and this value will be the address of a location. The size
of this location will be the same as that of the data type used as the operand. The
following syntax 1s used for dynamic memory allocation:

pointer variable = new data type;

Note that a pomter variable 1s used to hold the address returned by the new operator.
So, 1t should be declared eatlier with the same data type specified after new operator.
The following are examples for dynamic memory allocation:

short * si ptr;

float * f1 ptr;

struct complex * cx ptr;

si ptr = new short;

fl ptr = new float;

cx ptr = new complex;

The memory allocations are shown in Figure 1.8.

si ptr fl ptr cx ptr
\ @ 1000 \ \ ® 1010 | |.\1200 \
real imaginary
1000 1001 1010 1011 1012 1013 1200 1201 1202 1203

Fig. 1.8: Layout of dynamic memory allocation

Figure 1.8 shows that 2 bytes of location for short type data 1s allocated at the
address 1000 and 1t 1s stored in si_ptr. Similarly 4 bytes from the address 1010
for float type data 1s allocated and this address 1s stored m £1_ptr. Earlier we
discussed a structure named comp lex that consists of two short type elements.
The pointer cx_ptr holds the address 1200 that 1s allocated for a complex type
data of size 4 bytes (2 bytes each for short real and short imaginary).
Note that, the dynamically allocated memory locations cannot be referred to by
ordmary vartables. Rather these are accessed using mdirection (dereferencing)
operator only as shown m the followmg examples:

*si ptr = 247;
cin >> *fl ptr;

Z

Computer Science - XII

We have a structure pomter cx_ptr, but the data pomted to by this pointer cannot
be accessed m this format. We will discuss the accessing method later m this chapter.

As m the case of vartable mitialisation during static memory allocation, dynamically

allocated memory locations can also be mitialised using the following syntax:
pointer variable = new data type(value);

The following examples show initialisation along with dynamic memory allocation:

si ptr = new short(0);
fl ptr new float (3.14);

In the case of cx_ptr, this kind of mitialisation 1s not possible.

Once memory 1s allocated dynamically using new operator, it should be de-allocated
or released before exiting the program. C++ provides delete operator for this
purpose. In the case of static memory allocation, operating system itself allocates
and releases memory depending on the scope and life of the vartables. But in the
case of dynamic memory allocation, the program should have an explicit statement
to release (or free) the memory. For that, delete operator 1s used with the following
syntax:
delete pointer variable;
The following are valid examples:

delete si ptr;
delete fl1 ptr, cx ptr;

1.3.2 Memory leak

If the memory allocated using new operator 1s not freed using delete, that memory
1s said to be an orphaned memory block - a block of memory that 1s left unused,
but not released for further allocation. This memory block s allocated on each
execution of the program and the size of the orphaned block is increased. Thus a
part of the memory seems to disappear on every run of the program, and eventually
the amount of memory consumed has an unfavorable effect. This situation 1s known
as memory leak.

The following are the reasons for memory leak:

* FPorgetting to delete the memory that has been allocated dynamically (using
new).

+ Failing to execute the delete statement due to poor logic of the program
code.

* Assigning the address returned by new operator to a pointer that was already
pomting to an allocated object.

1. Structures and Pointers

Remedy for memory leak 1s to ensure that the memory allocated through new 1is
properly de-allocated through delete. Memory leak takes place only mn the case
of dynamic memory allocation. But m case of static memory allocation, the
Operating System takes the responsibility of allocation and deallocation without
user's instruction. So there is no chance of memory leak in static memory allocation

Now let us compare static memory allocation and dynamic memory
allocation. Table 1.4 may be used for comparison. Some of the entries
are left for you to complete using proper points.

Let us do

Static memory allocation Dynamic memory allocation
1. 'Takes place before the execution of the
program.
1. new operator 1s required
1. Pointer 1s essential
. Datais referenced using vartables

v. No statement 1s needed for de-
allocation

Table 1.4: Static Vs Dynamic memory allocation

Know your progress

1. What 1s pomnter?
2. What 1s the criterion for determinimng the data type of a pomter?

3. If mks 1s an integer vartable, write C++ statements to store 1ts
address 1 a pointer.

4. If ptr 1s an integer pomter, write C++ statement to allocate
memory for an mteger number and mitalise 1t with 12.

5. Consider the statements: int *p, a=5; p=&a; cout<<*p+a;
What 1s the output?

1.4 Operations on pointers

We have discussed that mdirection (*) and address of (&) operators can be used
with pomters. In Class XI, we used arithmetic, relational and logical operators. In
this section, we will have a look at the operators that can be used with pomters and
how these operations are performed.

#

Computer Science - XII

1.4.1 Arithmetic operations on pointers

We have seen that memory address 1s numeric 1 nature. Hence some of the
arithmetic operations can be performed on pointers. Let us consider the pomters
si _ptrand £1_ptr declared m section 1.3.1 (Refer Figure 1.8). Now, observe
the following statements:

cout << si ptr + 1;
cout << fl1 ptr + 1;

What will be the output? Do you think that 1t will be 1001 and 10117

Addmg 1 to a pomter 1s not the same as adding 1 to an int or float type data.
When we add 1 toa short int pomter, the expression returns the address of the
nextlocation of short int type. The cells with addresses 1000 and 1001 constitute
a single storage location for an mteger data of short type. Hence the address of
the next addressable short mteger location 1s 1002. So when 1 1s added to a short
int type pomter, actually its size (1.e., 2) 1s to be added to the address contained mn
the pointer vartable. Similarly, to add 1 to £loat type pomter, 1ts size (1.¢., 4) 1s to
be added to the address. So the expression £1_ptr+1 returns 1014. So, 1t 1s clear
that the expression si_ptr+5 returns 1010 (1000+5X2) and £1_ptr+3 returns
1022 (1010+3x4). Similarly, subtraction operation can also be performed on
pointers.

Find the values returned by the following arithmetic expressions:
si ptr + 10 fl ptr + 7

si ptr - 5 fl ptr - 10

Let us do

Note that this kind of operation 1s practically wrong. Because we are trying to
access locations that are not allocated for authorised use. These locations might
have been used by some other variables. Sometimes these locations might not have
been accessible due to the violation of access rights.

No other arithmetic operations are performed on pointers. So we can conclude
that pointers are only incremented or decremented. The following statements

illustrate various operations on pointers:
int *ptrl, *ptr2; // Declaration of two integer pointers
ptrl = new int(5); /* Dynamic memory allocation (let the
address be 1000)and initialisation with 5%*/

ptr2 = ptrl + 1; /* ptr2 will point to the very next

integer location with the address 1004 */
++ptr2; // Same as ptr2 = ptr2 + 1

1. Structures and Pointers

cout<< ptril; // Displays 1000

cout<< “*ptril; // Displays 5

cout<< ptr2; // Displays 1004

cin>> *ptr2; /* Reads an integer (say 12) and

stores it in location 1004 */
cout<< *ptrl + 1; // Displays 6 (5 + 1)
cout<< *(ptrl + 2);// Displays 12, the value at 1004
ptrl--; // Same as ptrl = ptrl - 1
Let us write a program to demonstrate the operations on pointers. Program 1.3
gtves the average height of a group of students.

Program 1.3: To find the average height of students

#include <iostream>
using namespace std;
int main()
{
int *ht ptr, n, s=0;
float avg ht;

ht ptr = new int; //dynamic memory allocation
cout<<"Enter the number of students: ";
cin>>n;

for (int i=0; 1i<n; i++)

{
cout<<"Enter the height of student "<<it+l<<"™ - ";
cin>>* (ht ptr+i);//to get the address of the next location
s = s + *(ht ptr+i);

}

avg ht = (float)s/n;

cout<<"Average height of students in the class = "<<avg ht;

return O;

}

In program 1.3, an integer location 1s dynamically allocated and the address 1s stored
m the pomter ht _ptr. When the body of theloop 1s executed for the first time, 0
1s added to this address and it does not make any change. The mput data is stored
m this location. During the second execution of the loop-body, 1 1s added to this
address and the next integer location is referenced for the input. This process 1s
contmnued for entering the heights of n students. Sum of these heights 1s calculated
along with the input and after the completion of the loop, average 1s calculated.

Zé

Computer Science - XII

Here explictt type conversion 1s used to get the accurate result. A sample output 1s
shown below:

Enter the number of students: b

Enter the height of student 1 - 170
Enter the height of student 2 - 169
Enter the height of student 3 - 175
Enter the height of student 4 - 165
Enter the height of student 5 - 177

Average height of students in the class = 171.199997

Program 1.3 also shows that a collection of the same type of data can be handled
by utilising pomter arithmetic. Last year, we used arrays in such a situation. But the
size should be specified during the array declaration. This may cause wastage or
msufficiency of memory space. Pomter and its arithmetic overcome this drawback.

But there 1s a problem 1n this kind of memory usage. It 1s not sure that Program 1.3
will always run with any value of n. GCC may not give any output for the avg_ht.
Though there is no problem theoretically, unexpected results may occur during
execution. As mentioned eatlier, pomter ht ptr 1s mitialised with the address of
only one location. The memory locations accessed using pointer arithmetic on
ht ptr are unauthorised, since these locations are not allocated by the OS. This
may lead to unexpected termination of the program or loss of some data that
already reside in those locations. We can overcome these 1ssues by the facility of
dynamic arrays, which we discuss mn Section 1.5 of this chapter.

1.4.2 Relational operations on pointers

Among the six relational operators, only == (equality) and != (non-equality)
operators are used with pointers. Memory address 1s simply a unique number to
identify each memory location. If p and g are two pomters, they may contain the
address of the same integer location or different memory locations. This can be
verified with the expressions p==qorp!=q.

Know your progress

1. Dynamic memory allocation operator m C++ 1s

2. What happens when the following statement 1s executed?
int *p = new int (5);

3. What 1s orphaned memory block?

4. If p 1s an mteger pomter, which of the following are invalid?
a. cout<<s&p; b. p=p*5; c.p>0
d. p++; e. p=1500; f. cout<<*p * 2;

1. Structures and Pointers

1.5 Pointer and array ar
. . 1000 34
We learnt that an array can contain a collection of 2
homogeneous type of data under a common name. This 1008 -
data 1s stored 1n contiguous memory locations. Figure 1.9 012 2
shows the memory allocation of an array ar [10] of int)
. 1016 24
type with 10 numbers.

. . . 1020 38
It 1s assumed that the array begms atlocation 1000 and each 13
location consists of 4 bytes (as per GCC). We know thatany o 14
element of this array can be referenced by specifying the | . =
subscript along with the array name. For example, ar [0] 1036 10

returns 34, ar [1] returns 12, and atlast ar [9] returns 19. Fig. 1.9: Memory

allocation for array ar

Write C++ statement to display all the 10 elements of this array.

How can we store the address of the first location of this array into
Letus do apointer?

If ptr 1s an mnteger pointer, the address of the first location of array ar [10] can
be stored m 1t with the following statement:

ptr = &ar[0];
Now let us see the output of the expressions used m the following statements:

cout<<ptr; //Displays 1000, the address of ar[0]
cout<<*ptr; //Displays 34, the value of ar[0]
cout<<(ptr+1); //Displays 1004, the address of ar([1]
cout<<* (ptr+1); //Displays 12, the wvalue of ar[1]
cout<<(ptr+9); //Displays 1036, the address of ar[9]
cout<<* (ptr+9); //Displays 19, the value of ar[9]

Can you predict the output of the statement: cout<<ar; ?
The output will be 1000, which is the address of the firstlocation of the array. This
address 1s known as base address of the array. We have seen that a variable that

contamns the address of a memory location 1s called pomter. In that sense, array-
name ar can be considered as a pomter. So the following statements are also valid:

cout<<ar; //Displays 1000, the address of ar[0]
ptr=ar; //same as ptr=&ar[0];
cout<<*ar; //Displays 34, and 1s same as cout<<ar[0];

cout<<(ar+1); //Displays 1004, the address of ar[l];
cout<<* (ar+1); //Displays 34, and is same as cout<<ar([1l];

...........

Computer Science - XII

The following C++ statement displays all the elements of this array:
for (int i=0; 1<10; i++)
cout<<* (ar+i)<<'\t';

There 1s a difference between an ordinary poimnter and an array-name. The statement
ptr++; 1s valid and 1s equivalent to ptr=ptr+1;. After the execution of this
statement ptr will point to the location of ar[1]. That is, ptr will contain the
address of ar [1]. But the statement ar++; 1s mvalid, because array-name always
contains the base address of the array, and 1t cannot be changed.

Dynamic array

In C++, array helps to handle a collection of same type of data. But, if the number
of data items 1s not known m advance, there 1s a problem 1in declaring the array. As
we know; size of array 1s to be specified in the declaration statement, and 1t should
be an mteger constant. How can we declare an array to store the percent of pass
obtamed by the schools m any district in the Higher Secondary exammation? Neither
float pass[n]; nor float pass[]; 1s valid. We have to mention an integer
constant as size of the array and it may cause msufficiency or wastage of memory
space. The district, and hence the number of schools are unknown while writing the
program. So, the program should provide the facility to allocate the required
locations as per the user's input. The solution in such a situation is dynamic array.

Dynamic array is created during run time using the dynamic memory allocation
operator new. The syntax is:

pointer = new data typel[size];
Here, the size can be a constant, a vartable or an integer expression. Program 1.4
tllustrates the concept of dynamic array. It can store the percent of pass secured by
the schools. The number of schools will be decided by the user only at the time of
execution of the program.

Program 1.4: To find the highest percent of pass in schools

#include <iostream>
using namespace std;
int main()
{
float *pass, max;
int i, n;
cout<<"Enter the number of schools: ";
cin>>n; //To input number of schools

pass = new float[n];//dynamic array having n elements

1. Structures and Pointers

for (i=0; i<n; i++)
{
cout<<"Percent of pass by school "<<i+l<<": ";
cin>>pass[i]; //Concept of subscripted variable
}
max=pass [0];
for (i=1; i<n; i++)
if (pass[i]>max) max = *(pass+i);
/* Elements are accessed using subscript and pointer
arithmetic operation */
cout<<"Highest percent is "<<max;

return O;

}

Output:

Enter the number of schools: 5
Percent of pass by school 1: 75.6
Percent of pass by school 2: 66.5
Percent of pass by school 3: 89.3
Percent of pass by school 4: 71
Percent of pass by school 5: 70.6

Highest percent is 89.3

Program 1.4 uses dynamic array to store the data. Memory 1s allocated only during
execution and five locations, each with 4 bytes, are reserved for the array pass.
Elements of this array are accessed using subscript as well as pomter arithmetic
operation.

Read the following statements and write the difference between them:

int *ptr = new int(10);

int *ptr = new int[10];

Let us do

1.6 Pointer and string

In Class XI, we learnt that string data can be referenced by character array and the
array-name can be considered as string variable. In the previous section, we saw
that array-name contains the base address of the array, and hence 1t can be considered
as a poimter. Let us discuss how these two aspects are combined to refer to strings
using pointer. The following statements illustrate how character pointer differs from
the other pomters:

3#

Computer Science - XII

char str[20]; //character array declaration

char *sp; //character pointer declaration
cin>>str; //To input a string, say "Program"
cout<<str; //Displays the string "Program"
sp=str; //Content of str is copied into the pointer sp

cout<<sp; //Displays the string "Program"

cout<<&str[0]; //Displays the string "Program"
cout<<sp+1; //Displays the string "rogram"
cout<<&str+l; //Displays the string "rogram"

/* The two statements given above display the substring
starting from 2nd character onwards */

cout<<str[0]; //Displays the character 'pP!
cout<<*sp; //Displays the character 'pP!
cout<<g&str; //Displays the base address of the array str
cout<<g&sp; //Displays the address of the pointer sp

A string contamed 1n an array cannot be copied mto another character array using
assignment operator (=) (we used strcpy () function last year). But, the assignment 13
possible with character poimters. The statements sp=str; and cout<<sp; show
this fact. It proves that a character pointer can be used to store a string and this
pointer can be considered as a string variable. That 1s, as we use character array
name to refer to string data, character pointer can also serve the same.

Another interesting aspect 1s that, the statement cout<<gstr [0] ; also displays
the entire string, instead of the address of the first location (base address). That
means, if we access theaddress of a string data, we get the string itself. But str [0]
and *sp gives the first character of the string,

Advantages of character pointer
The use of character pointer for storing string offers the following advantages over
character array:

+ Since there 1s no size specification, a string of any number of characters can be
stored. There is no wastage or insufficiency of memory space. But it should be
done with mitialization. (e.g,, char *str = "Program";)

+ Assignment operator (=) can be used to copy strings.

* Any character m the string can be referenced using the concept of pomnter
arithmetic which makes access faster.

» Array of strings can be managed with optimal use of memory space.

1. Structures and Pointers

Array of strings

Suppose, we want to store the names of days m aweek. A character array or character
pomter can be used to store only one name at a time. Here we need to refer to a
collection of strings ("Sunday", "Monday", ..., "Saturday"). Obviously we should
use an array of character arrays (2D array of char type) or an array of character
pointers. The following statement declares an array of character pointers to handle
this case:

char *namel[7];

This array can contain a maximum of 7 strings, where each string can contain any
number of characters. But we should make sure that the ponter array 1s mitilaised.
It may be as follows:

char *week[7]={"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"};

Figure 1.10 shows the optimal use of memory locations. Only the shaded portion
will be allocated.

Week

Write C++ statementstosort | s |u|n |d|a|y|\0
these names using any of the
sorting techniques we
discussed in Class XI. Since we
use character pointer, strings |W e |djnjefsjdjaly|\0
can be copied wusing |r|h|u|r|s|d|a|y|\0
assignment operator. Check
the correctness of your code
during your lab work.

M|o|n|d|a|y|\O

T | u|e|s|d|af|y|\O

Flr|i|d|a]|y]|[\O

Slalt|ju|r|d|la]|y]|\O

Fig. 1.10: Memory allocation for strings
The following statement illustrates the accessing of these strings:
for (1i=0; 1i<7; i++)

cout<<name [1i];

An array of strings can be handled using a 2D character array as given1
below:

char name[10] [20] ;

This array can contain 10 names, each of which can have a maximum of
19 characters. One byte is reserved for null character (' \0'). Each string is referred
to by the expression name [1], where the subscript i can take values from 0to 9.In

this case strcpy () function should be used for copying the strings into variables.
—

33 [

Computer Science - XII

Know your progress

1. What 1s dynamic array?

2. Address of the first location of an array 1s known as

3. If arr 1s an integer array, which of the followimng are mvalid?
a. cout<<arr; b. arr++; C. cout<<* (arr+1);
d. cin>>arr; €. arr=1500; f. cout<<*arr * 2;

4. Write a declaration statement in C++ to refer to the names of 10
books using poimters.

5. Write a statement to declare a pomnter and mitialise 1t with your
name.

1.7 Pointer and structure

Earlier in this chapter, we discussed structure data type and its applications. This
section discusses how structures are accessed by pomters. A structure 1s defined to
represent the details of employees as follows:

struct employee

{
int ecode;
char ename[1l5];
float salary:
bi
Now, observe the following declaration statement:
employee *eptr;
It 1s clear that eptr 1s a pointer that can hold the address of employee type data.
The statement:
eptr = new employee;
allocates 23 bytes of memory and its address 1s stored in the pomter eptr. Figure

1.11 illustrates the effect of this statement. .
eptr

9

ecode ename salary

Fig. 1.11: Dynamic memory allocation for employee type data

1. Structures and Pointers

We learnt that a structure 1s accessed i terms of 1ts elements with the followmng
format:

structure_variable.element_name

Here, we do not have a structure variable to access the elements ecode, ename
and salary. So we have to use the pointer eptr. The syntax for accessing the
elements of a structure 1s as follows:

structure pointer->element name

Note that structure pomter and an element 1s connected using arrow operator
(=>). It 1s constituted by a hyphen (-) followed by greater than symbol (>). The
following statements are examples for accessing the elements of the structure shown

m Figurel.11.
eptr->ecode = 657346; //Rssigns an employee code
gets (eptr->ename) ; //inputs the name of an employee
cin>> eptr->salaray; //inputs the salary of an employee

cout<< eptr->salary * 0.12; //Displays 12% of the salary

Farlier in this chapter, m Section 1.3.1, we mentioned a pomter
cx_ptrof complex type structure. Write C++ statements to mput
a complex number and display m 1ts actual format.

Let us do

Let us modity the structure employee by adding an element as follows:

struct employee
{
int ecode;
char ename[1l5];
float salary:
int *ip;
bi
Obviously, the element ip can contain the address of an integer location. The
following statements illustrate the use of pomter ip:

eptr->ip = new int(5); /* Dynamic allocation for integer
and initialiastion with 5 */

cout << *(eptr->ip); // Displaying the wvalue 5

int n = eptr->*ip+1; // Bdding 1 to 5 and stores it inn

Observe that the value pomted to by ip can be referenced in two ways:
* (eptr->ip) and eptr->*ip. A structure can contain pointer of any data type
as 1ts element. Even 1t may be of the same structure data type as follows:

34

Computer Science - XII

struct employee

{

int ecode; The element ep is a pointer

char ename[15]; of employee data type

float salary:
employee *ep;
bi
Now, the structure employee 1s known as self referential structure. Let us discuss
more on this type of structures and their applications.

Self referential structure

Self referential structure is a structure in which one of the elements is a pointer
to the same structure. A location of this type contains data and the address of
another location of the same type. This location can again contain data and address
of yet another location of the same structure type. It can be extended as per the
requirement. Figure 1.12 shows this concept.

Fig. 1.12: An employee of structure type points to another employee

An employee named "Sunil" points to the next employee whose table number 1s 12.
The employee at table number 12 1s "Anil" and he pomts to the next employee
"Nisha" and so on.

Self referential structure 1s a powerful tool of Cand C++ languages that helps to
develop dynamic data structures like linked list, tree, etc. Dynamic data structure
means a collection of data for which memory will be allocated during run-time.
The memory locations are scattered, but there will be a link from one location to
another. More about the data structure limked list will be discussed m Chapter 3.

Let us conclude

We have discussed more advanced data types m C++ m this chapter. Structure data
type 1s mtroduced to represent grouped or aggregate data under single name.
Accessing of elements with dot operator (.) 1s discussed. Pomter 1s presented as a
special type of data. Operations associated with pointers are 1llustrated with the
help of expressions. The concept of dynamic memory allocation and the required

1. Structures and Pointers

operators, and its advantages are discussed. The relationship between array and
pomter 1s fllustrated, and string data are handled usmg pomter. A good understanding
of the concepts dealt with m this chapter will help you to attam the learning outcomes
specified i Chapter 3 and equip you for higher studies.

me

1

% Let us practice
&

Define a structure to represent the details of telephone subscribers which mclude
name of the subscriber and telephone number. Write a menu driven program
to store the details of some subscribers with options for searching the name
for a given number, and the number for a given name.

Define a structure to represent the details of customers i a bank. The details
mclude account number, name, date of openmg the account and balance
amount. Write a menu driven program to mput the details of a customer and
provide options to deposit, withdraw and view the details. During deposit
and withdrawal, proper update 1s to be made m the balance amount. A mmmum
balance of Rs. 1000/~ is a must in the account.

Write a program to input the TE scores obtained by a group of students in
Computer Science and display them m the descending order using pointers.

Write a program to mput a string and check whether it 1s palindrome or not
using character pomter.

Write a program to mput the names of students mn a class using pointers and
create a roll list in which the names are listed 1n alphabetical order with roll
number starting from 1.

Define a structure student with the details register number, name and CE marks
of six subjects. Using a structure pomter, nput the details of a student and
display register number, name and total CE score.

1.
2.

Compare array and structure m C++.

Identify the errors n the following structure definition and write the reason
for each:

struct

{

int roll, age;
float fee=1000;

Computer Science - XII

3. Read the following structure defmition and answer the following questions:

struct Book

{

int book no;
char bk name[20];
struct

{
short dd;

short mm;
short vyy;
}dt of purchase;
float price;
bi
a. Write a C++ statement to declare a variable to refer to the details of a
book. What 1s the memory requirement of this variable? Justify your answer.

b. Write a C++ statement to initialise this vartable with the details of your
Computer Science text book.

c. Write C++ statement(s) to display the details of the book.
d. The missing of structure tag i the inner structure does not cause any
error. State whether this is true or false. Give reason.

4. "Structure is a user-defined data type". Justify this statement with the help of
an example.

5. Read the following statements:
1. While defming a structure m C++, tag may be omitted.

1. 'The data contamned in a structure variable can be copied into another variable
only if both of them are declared using the same structure tag,

ut. Flements of a structure 1s referenced by structure_name.element
1v. A structure can contain another structure.

Now;, choose the correct option from the following;

a. Statements (1) and (11) are true b. Statements (1) and (1v) are true
c. Statements (1), (11) and (v) are true d. Statements (1) and (i) are true

6. Read the followimng C++ statements:
int * p, a=5;
p=&a;
a. What 1s the speciality of the variable p?
b. What will be the content of p after the execution of the second statement?
c. How do the expressions *p+1 and * (p+1) differ?

1. Structures and Pointers

7. Identify the errors in the following C++ code segment and give the reason for
each.
int *p,*q, a=5;
float b=2;
p=&a;
g=&b;
cout<<p<<*p<<*g;
if (p<qg)cout<<p;
cout<<*p * a;

8. While writing a program, the concept of dynamic memory allocation 1s applied.
But the program does not contain a statement with delete operator and 1t
creates a problem. Explain the problem.

9. Read the C++ statements given below and answer the following questions:

int ar[] = {34, 12, 25, 56, 38};
int *p = ar;
a. Whatwill be the content of p?
b. What is the output of the expression: *p + *(ar+2)?

c. 'Thestatement ar++; is invalid. Why? How does it differ from p++;?

10. Explain the working of the following code segment and predict the output:
char *str = "Tobacco Kills";
for (int 1=0; str[i]!='\0"; 1i++)
if (i>8)
(str+i) = toupper ((str+i));
cout<<str;

11. Observe the following C++ statements:

int ar[] = {14, 29, 32, 63, 30};
One of following expressions cannot be used to access the element 32. Which
1s that?
a. ar[2] b. ar[*ar%3] c. *ar+2 d. * (ar+2)

12. Explain the operations performed by the operaors new and delete with the
help of examples.

13. What 1s meant by memory leak? What are the reasons for it? How can we
avoid such a situation?

&

Computer Science - XII

14. Compare the following two statements.
int a=5;
int *a=new int(5);
15. Read the structure definition given below and answer the following questions:

struct sample

{
int num;
char *str;

} *sptr;

a. Write C++ statements to dynamically allocate a location for sample type
data and store 1ts address 1 sptr.

b. Write C++ statements to mput data mto the location pomted to by sptr.

Modify this structure into a self referential structure.

........... 40

